import gradio as gr import tensorflow as tf import numpy as np # Load the pre-trained model model = tf.keras.applications.MobileNetV2() labels_path = tf.keras.utils.get_file( 'ImageNetLabels.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt') imagenet_labels = np.array(open(labels_path).read().splitlines()) # Define the prediction function def classify_image(image): image = tf.keras.applications.mobilenet_v2.preprocess_input(image) predictions = model.predict(np.expand_dims(image, axis=0)) return {imagenet_labels[i]: float(predictions[0][i]) for i in range(1000)} # Create a Gradio interface inputs = gr.inputs.Image(shape=(224, 224)) outputs = gr.outputs.Label(num_top_classes=3) interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs, capture_session=True) # Launch the interface interface.launch()