Spaces:
Runtime error
Runtime error
Commit
·
bca2eec
1
Parent(s):
c28b5a3
Upload main_interface.ipynb
Browse files- main_interface.ipynb +522 -0
main_interface.ipynb
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 17,
|
6 |
+
"id": "5a68a7b7",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from tkinter import *\n",
|
11 |
+
"import pickle\n",
|
12 |
+
"import numpy as np\n",
|
13 |
+
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
14 |
+
"from tensorflow.keras.models import Model\n",
|
15 |
+
"from tensorflow.keras import models\n",
|
16 |
+
"from tensorflow.keras.layers import Input,LSTM,Dense\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"id": "0bce948d",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": []
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"id": "04a85883",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": []
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 42,
|
38 |
+
"id": "7aa10e9a",
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"import tensorflowjs as tf"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 45,
|
48 |
+
"id": "b3c21b9e",
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"from tensorflow.keras.models import load_model\n",
|
53 |
+
"model=load_model(\"model_translation\")"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": 47,
|
59 |
+
"id": "29483b74",
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"tf.converters.save_keras_model(model,'C:\\\\Users\\\\Shrusti\\\\Desktop\\\\project')"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 18,
|
69 |
+
"id": "4734036f",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"cv_translation=CountVectorizer(binary=True,tokenizer=lambda txt: txt.split(),stop_words=None,analyzer='char') \n",
|
74 |
+
"\n",
|
75 |
+
"cv_transliteration=CountVectorizer(binary=True,tokenizer=lambda txt: txt.split(),stop_words=None,analyzer='char') "
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"id": "3d773f1d",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [],
|
84 |
+
"source": []
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": 19,
|
89 |
+
"id": "15b11fd1",
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"datafile_translation = pickle.load(open(\"training_data_translation.pkl\",\"rb\"))\n",
|
94 |
+
"input_characters_translation = datafile_translation['input_characters']\n",
|
95 |
+
"target_characters_translation = datafile_translation['target_characters']\n",
|
96 |
+
"max_input_length_translation = datafile_translation['max_input_length']\n",
|
97 |
+
"max_target_length_translation = datafile_translation['max_target_length']\n",
|
98 |
+
"num_en_chars_translation = datafile_translation['num_en_chars']\n",
|
99 |
+
"num_dec_chars_translation = datafile_translation['num_dec_chars']\n",
|
100 |
+
"input_texts_translation=datafile_translation['input_texts']"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": null,
|
106 |
+
"id": "7ed45252",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": []
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 20,
|
114 |
+
"id": "c35fca3a",
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"datafile_transliteration = pickle.load(open(\"training_data_transliteration.pkl\",\"rb\"))\n",
|
119 |
+
"input_characters_transliteration = datafile_transliteration['input_characters']\n",
|
120 |
+
"target_characters_transliteration = datafile_transliteration['target_characters']\n",
|
121 |
+
"max_input_length_transliteration = datafile_transliteration['max_input_length']\n",
|
122 |
+
"max_target_length_transliteration = datafile_transliteration['max_target_length']\n",
|
123 |
+
"num_en_chars_transliteration = datafile_transliteration['num_en_chars']\n",
|
124 |
+
"num_dec_chars_transliteration = datafile_transliteration['num_dec_chars']"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "markdown",
|
129 |
+
"id": "324ec66f",
|
130 |
+
"metadata": {},
|
131 |
+
"source": [
|
132 |
+
"transliteration"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"execution_count": 21,
|
138 |
+
"id": "c16d85b7",
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"#Inference model\n",
|
143 |
+
"#load the model\n",
|
144 |
+
"model_transliteration = models.load_model(\"s2s_transliteration\")\n",
|
145 |
+
"#construct encoder model from the output of second layer\n",
|
146 |
+
"#discard the encoder output and store only states.\n",
|
147 |
+
"enc_outputs_transliteration, state_h_enc_transliteration, state_c_enc_transliteration = model_transliteration.layers[2].output \n",
|
148 |
+
"#add input object and state from the layer.\n",
|
149 |
+
"en_model_transliteration = Model(model_transliteration.input[0], [state_h_enc_transliteration, state_c_enc_transliteration])\n",
|
150 |
+
"#create Input object for hidden and cell state for decoder\n",
|
151 |
+
"#shape of layer with hidden or latent dimension\n",
|
152 |
+
"dec_state_input_h_transliteration = Input(shape=(256,), name=\"input_6\")\n",
|
153 |
+
"dec_state_input_c_transliteration = Input(shape=(256,), name=\"input_7\")\n",
|
154 |
+
"dec_states_inputs_transliteration = [dec_state_input_h_transliteration, dec_state_input_c_transliteration]\n",
|
155 |
+
"#add input from the encoder output and initialize with states.\n",
|
156 |
+
"dec_lstm_transliteration = model_transliteration.layers[3]\n",
|
157 |
+
"dec_outputs_transliteration, state_h_dec_transliteration, state_c_dec_transliteration = dec_lstm_transliteration(\n",
|
158 |
+
" model_transliteration.input[1], initial_state=dec_states_inputs_transliteration\n",
|
159 |
+
")\n",
|
160 |
+
"dec_states_transliteration = [state_h_dec_transliteration, state_c_dec_transliteration]\n",
|
161 |
+
"dec_dense_transliteration = model_transliteration.layers[4]\n",
|
162 |
+
"dec_outputs_transliteration = dec_dense_transliteration(dec_outputs_transliteration)\n",
|
163 |
+
"#create Model with the input of decoder state input and encoder input\n",
|
164 |
+
"#and decoder output with the decoder states.\n",
|
165 |
+
"dec_model_transliteration = Model(\n",
|
166 |
+
" [model_transliteration.input[1]] + dec_states_inputs_transliteration, [dec_outputs_transliteration] + dec_states_transliteration\n",
|
167 |
+
")"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 22,
|
173 |
+
"id": "419f55d5",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"def decode_sequence_transliteration(input_seq):\n",
|
178 |
+
" #create a dictionary with a key as index and value as characters.\n",
|
179 |
+
" reverse_target_char_index_transliteration = dict(enumerate(target_characters_transliteration))\n",
|
180 |
+
" #get the states from the user input sequence\n",
|
181 |
+
" states_value_transliteration = en_model_transliteration.predict(input_seq)\n",
|
182 |
+
"\n",
|
183 |
+
" #fit target characters and \n",
|
184 |
+
" #initialize every first character to be 1 which is '\\t'.\n",
|
185 |
+
" #Generate empty target sequence of length 1.\n",
|
186 |
+
" co=cv_transliteration.fit(target_characters_transliteration) \n",
|
187 |
+
" target_seq_transliteration=np.array([co.transform(list(\"\\t\")).toarray().tolist()],dtype=\"float32\")\n",
|
188 |
+
"\n",
|
189 |
+
" #if the iteration reaches the end of text than it will be stop the it\n",
|
190 |
+
" stop_condition = False\n",
|
191 |
+
" #append every predicted character in decoded sentence\n",
|
192 |
+
" decoded_sentence = \"\"\n",
|
193 |
+
"\n",
|
194 |
+
" while not stop_condition:\n",
|
195 |
+
" #get predicted output and discard hidden and cell state.\n",
|
196 |
+
" output_chars, h, c = dec_model_transliteration.predict([target_seq_transliteration] + states_value_transliteration)\n",
|
197 |
+
"\n",
|
198 |
+
" #get the index and from the dictionary get the character.\n",
|
199 |
+
" char_index = np.argmax(output_chars[0, -1, :])\n",
|
200 |
+
" text_char = reverse_target_char_index_transliteration[char_index]\n",
|
201 |
+
" decoded_sentence += text_char\n",
|
202 |
+
" # Exit condition: either hit max length\n",
|
203 |
+
" # or find a stop character.\n",
|
204 |
+
" if text_char == \"\\n\" or len(decoded_sentence) > max_target_length_transliteration:\n",
|
205 |
+
" stop_condition = True\n",
|
206 |
+
" #update target sequence to the current character index.\n",
|
207 |
+
" target_seq_transliteration = np.zeros((1, 1, num_dec_chars_transliteration))\n",
|
208 |
+
" target_seq_transliteration[0, 0, char_index] = 1.0\n",
|
209 |
+
" states_value_transliteration = [h, c]\n",
|
210 |
+
" #return the decoded sentence\n",
|
211 |
+
" return decoded_sentence\n"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": 23,
|
217 |
+
"id": "cd306c27",
|
218 |
+
"metadata": {},
|
219 |
+
"outputs": [],
|
220 |
+
"source": [
|
221 |
+
"def bagofcharacter_transliteration(input_t):\n",
|
222 |
+
" cv_transliteration=CountVectorizer(binary=True,tokenizer=lambda txt:\n",
|
223 |
+
" txt.split(),stop_words=None,analyzer='char') \n",
|
224 |
+
" en_in_data=[] ; pad_en=[1]+[0]*(len(input_characters_transliteration)-1)\n",
|
225 |
+
" \n",
|
226 |
+
" cv_inp= cv_transliteration.fit(input_characters_transliteration)\n",
|
227 |
+
" en_in_data.append(cv_inp.transform(list(input_t)).toarray().tolist())\n",
|
228 |
+
" \n",
|
229 |
+
" if len(input_t)< max_input_length_transliteration:\n",
|
230 |
+
" for _ in range(max_input_length_transliteration-len(input_t)):\n",
|
231 |
+
" en_in_data[0].append(pad_en)\n",
|
232 |
+
" \n",
|
233 |
+
" return np.array(en_in_data,dtype=\"float32\")"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "markdown",
|
238 |
+
"id": "264e62af",
|
239 |
+
"metadata": {},
|
240 |
+
"source": [
|
241 |
+
"translation"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "code",
|
246 |
+
"execution_count": 24,
|
247 |
+
"id": "5b799dff",
|
248 |
+
"metadata": {},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"#Inference model\n",
|
252 |
+
"#load the model\n",
|
253 |
+
"model_translation = models.load_model(\"model_translation\")\n",
|
254 |
+
"#construct encoder model from the output of second layer\n",
|
255 |
+
"#discard the encoder output and store only states.\n",
|
256 |
+
"enc_outputs_translation, state_h_enc_translation, state_c_enc_translation = model_translation.layers[2].output \n",
|
257 |
+
"#add input object and state from the layer.\n",
|
258 |
+
"en_model_translation = Model(model_translation.input[0], [state_h_enc_translation, state_c_enc_translation])\n",
|
259 |
+
"#create Input object for hidden and cell state for decoder\n",
|
260 |
+
"#shape of layer with hidden or latent dimension\n",
|
261 |
+
"dec_state_input_h_translation = Input(shape=(256,))\n",
|
262 |
+
"dec_state_input_c_translation = Input(shape=(256,))\n",
|
263 |
+
"dec_states_inputs_translation = [dec_state_input_h_translation, dec_state_input_c_translation]\n",
|
264 |
+
"#add input from the encoder output and initialize with states.\n",
|
265 |
+
"dec_lstm_translation = model_translation.layers[3]\n",
|
266 |
+
"dec_outputs_translation, state_h_dec_translation, state_c_dec_translation = dec_lstm_translation(\n",
|
267 |
+
" model_translation.input[1], initial_state=dec_states_inputs_translation\n",
|
268 |
+
")\n",
|
269 |
+
"dec_states_translation = [state_h_dec_translation, state_c_dec_translation]\n",
|
270 |
+
"dec_dense_translation = model_translation.layers[4]\n",
|
271 |
+
"dec_outputs_translation = dec_dense_translation(dec_outputs_translation)\n",
|
272 |
+
"#create Model with the input of decoder state input and encoder input\n",
|
273 |
+
"#and decoder output with the decoder states.\n",
|
274 |
+
"dec_model_translation = Model(\n",
|
275 |
+
" [model_translation.input[1]] + dec_states_inputs_translation, [dec_outputs_translation] + dec_states_translation\n",
|
276 |
+
")"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": 25,
|
282 |
+
"id": "7fb2775a",
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"def decode_sequence_translation(input_seq):\n",
|
287 |
+
" #create a dictionary with a key as index and value as characters.\n",
|
288 |
+
" reverse_target_char_index_translation = dict(enumerate(target_characters_translation))\n",
|
289 |
+
" #get the states from the user input sequence\n",
|
290 |
+
" states_value_translation = en_model_translation.predict(input_seq)\n",
|
291 |
+
"\n",
|
292 |
+
" #fit target characters and \n",
|
293 |
+
" #initialize every first character to be 1 which is '\\t'.\n",
|
294 |
+
" #Generate empty target sequence of length 1.\n",
|
295 |
+
" co_translation=cv_translation.fit(target_characters_translation) \n",
|
296 |
+
" target_seq_translation=np.array([co_translation.transform(list(\"\\t\")).toarray().tolist()],dtype=\"float32\")\n",
|
297 |
+
"\n",
|
298 |
+
" #if the iteration reaches the end of text than it will be stop the it\n",
|
299 |
+
" stop_condition = False\n",
|
300 |
+
" #append every predicted character in decoded sentence\n",
|
301 |
+
" decoded_sentence_translation = \"\"\n",
|
302 |
+
"\n",
|
303 |
+
" while not stop_condition:\n",
|
304 |
+
" #get predicted output and discard hidden and cell state.\n",
|
305 |
+
" output_chars_translation, h_translation, c_translation = dec_model_translation.predict([target_seq_translation] + states_value_translation)\n",
|
306 |
+
"\n",
|
307 |
+
" #get the index and from the dictionary get the character.\n",
|
308 |
+
" char_index_translation = np.argmax(output_chars_translation[0, -1, :])\n",
|
309 |
+
" text_char_translation = reverse_target_char_index_translation[char_index_translation]\n",
|
310 |
+
" decoded_sentence_translation += text_char_translation\n",
|
311 |
+
" # Exit condition: either hit max length\n",
|
312 |
+
" # or find a stop character.\n",
|
313 |
+
" if text_char_translation == \"\\n\" or len(decoded_sentence_translation) > max_target_length_translation:\n",
|
314 |
+
" stop_condition = True\n",
|
315 |
+
" #update target sequence to the current character index.\n",
|
316 |
+
" target_seq_translation = np.zeros((1, 1, num_dec_chars_translation))\n",
|
317 |
+
" target_seq_translation[0, 0, char_index_translation] = 1.0\n",
|
318 |
+
" states_value_translation = [h_translation, c_translation]\n",
|
319 |
+
" #return the decoded sentence\n",
|
320 |
+
" return decoded_sentence_translation\n"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"cell_type": "code",
|
325 |
+
"execution_count": 26,
|
326 |
+
"id": "8a662484",
|
327 |
+
"metadata": {},
|
328 |
+
"outputs": [],
|
329 |
+
"source": [
|
330 |
+
"\n",
|
331 |
+
"def bagofcharacter_translation(input_t):\n",
|
332 |
+
" cv_translation=CountVectorizer(binary=True,tokenizer=lambda txt:\n",
|
333 |
+
" txt.split(),stop_words=None,analyzer='char') \n",
|
334 |
+
" en_in_data=[] ; pad_en=[1]+[0]*(len(input_characters_translation)-1)\n",
|
335 |
+
" \n",
|
336 |
+
" cv_inp_translation= cv_translation.fit(input_characters_translation)\n",
|
337 |
+
" en_in_data.append(cv_inp_translation.transform(list(input_t)).toarray().tolist())\n",
|
338 |
+
" \n",
|
339 |
+
" if len(input_t)< max_input_length_translation:\n",
|
340 |
+
" for _ in range(max_input_length_translation-len(input_t)):\n",
|
341 |
+
" en_in_data[0].append(pad_en)\n",
|
342 |
+
" \n",
|
343 |
+
" return np.array(en_in_data,dtype=\"float32\")\n",
|
344 |
+
" "
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": null,
|
350 |
+
"id": "dad973d9",
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": []
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"execution_count": null,
|
358 |
+
"id": "17f284a1",
|
359 |
+
"metadata": {},
|
360 |
+
"outputs": [],
|
361 |
+
"source": []
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "code",
|
365 |
+
"execution_count": 31,
|
366 |
+
"id": "80758957",
|
367 |
+
"metadata": {},
|
368 |
+
"outputs": [],
|
369 |
+
"source": [
|
370 |
+
"def translate_to_Konkani(sent): \n",
|
371 |
+
" \n",
|
372 |
+
" input_text = sent.split(',') \n",
|
373 |
+
" output_texts=\"\"\n",
|
374 |
+
" for x in input_text:\n",
|
375 |
+
" term=x+\".\"\n",
|
376 |
+
" if term in input_texts_translation:\n",
|
377 |
+
" en_in_data = bagofcharacter_translation( x.lower()+\".\") \n",
|
378 |
+
" x=decode_sequence_translation(en_in_data)\n",
|
379 |
+
" output_texts+=\" \"+ x \n",
|
380 |
+
" else:\n",
|
381 |
+
" en_in_data = bagofcharacter_transliteration( x.lower()+\".\") \n",
|
382 |
+
" x=decode_sequence_transliteration(en_in_data)\n",
|
383 |
+
" output_texts+=\" \"+ x \n",
|
384 |
+
" print(output_texts)\n",
|
385 |
+
"\n"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": null,
|
391 |
+
"id": "beab3e3f",
|
392 |
+
"metadata": {},
|
393 |
+
"outputs": [],
|
394 |
+
"source": []
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": null,
|
399 |
+
"id": "8049b45b",
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [],
|
402 |
+
"source": []
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": null,
|
407 |
+
"id": "96009f8b",
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": []
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"cell_type": "code",
|
414 |
+
"execution_count": null,
|
415 |
+
"id": "83c105e1",
|
416 |
+
"metadata": {},
|
417 |
+
"outputs": [],
|
418 |
+
"source": []
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "code",
|
422 |
+
"execution_count": null,
|
423 |
+
"id": "265d97ea",
|
424 |
+
"metadata": {},
|
425 |
+
"outputs": [],
|
426 |
+
"source": []
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": null,
|
431 |
+
"id": "76fde2e1",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": []
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"cell_type": "code",
|
438 |
+
"execution_count": null,
|
439 |
+
"id": "dd961506",
|
440 |
+
"metadata": {},
|
441 |
+
"outputs": [],
|
442 |
+
"source": []
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"cell_type": "code",
|
446 |
+
"execution_count": null,
|
447 |
+
"id": "12ac4538",
|
448 |
+
"metadata": {},
|
449 |
+
"outputs": [],
|
450 |
+
"source": []
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"cell_type": "code",
|
454 |
+
"execution_count": null,
|
455 |
+
"id": "ceb25845",
|
456 |
+
"metadata": {},
|
457 |
+
"outputs": [],
|
458 |
+
"source": []
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "code",
|
462 |
+
"execution_count": null,
|
463 |
+
"id": "3bd690d1",
|
464 |
+
"metadata": {},
|
465 |
+
"outputs": [],
|
466 |
+
"source": []
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"cell_type": "code",
|
470 |
+
"execution_count": null,
|
471 |
+
"id": "a470372d",
|
472 |
+
"metadata": {},
|
473 |
+
"outputs": [],
|
474 |
+
"source": []
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"cell_type": "code",
|
478 |
+
"execution_count": null,
|
479 |
+
"id": "82b9b9bc",
|
480 |
+
"metadata": {},
|
481 |
+
"outputs": [],
|
482 |
+
"source": []
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": null,
|
487 |
+
"id": "5057c557",
|
488 |
+
"metadata": {},
|
489 |
+
"outputs": [],
|
490 |
+
"source": []
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"cell_type": "code",
|
494 |
+
"execution_count": null,
|
495 |
+
"id": "1410267f",
|
496 |
+
"metadata": {},
|
497 |
+
"outputs": [],
|
498 |
+
"source": []
|
499 |
+
}
|
500 |
+
],
|
501 |
+
"metadata": {
|
502 |
+
"kernelspec": {
|
503 |
+
"display_name": "Python 3 (ipykernel)",
|
504 |
+
"language": "python",
|
505 |
+
"name": "python3"
|
506 |
+
},
|
507 |
+
"language_info": {
|
508 |
+
"codemirror_mode": {
|
509 |
+
"name": "ipython",
|
510 |
+
"version": 3
|
511 |
+
},
|
512 |
+
"file_extension": ".py",
|
513 |
+
"mimetype": "text/x-python",
|
514 |
+
"name": "python",
|
515 |
+
"nbconvert_exporter": "python",
|
516 |
+
"pygments_lexer": "ipython3",
|
517 |
+
"version": "3.9.13"
|
518 |
+
}
|
519 |
+
},
|
520 |
+
"nbformat": 4,
|
521 |
+
"nbformat_minor": 5
|
522 |
+
}
|