Spaces:
Sleeping
Sleeping
import streamlit as st | |
import streamlit.components.v1 as components | |
st.title("Topic Modeling") | |
def introduction(): | |
st.title("Research & Methodology") | |
st.markdown("LDA as Baseline: " | |
"Describe the use of Latent Dirichlet Allocation as a baseline for comparison and understanding.") | |
st.markdown("Process Flow: Step-by-step breakdown of the analysis process, from data gathering to insights extraction.") | |
# Display the LDA visualization HTML file | |
components.html(open('lda_visualization.html', 'r').read(), height=800) | |
def lda_page(): | |
st.title("Insights & Findings of Latent Dirichlet Allocation (LDA) Model") | |
st.markdown("Priliminary Results: findings, notebooks, documentation") | |
st.markdown("Visualizations including pyLDAvis: ") | |
st.markdown("Key Trends: ") | |
sidebar_pages = ["Introduction", "Latent Dirichlet Allocation"] | |
def main(): | |
st.sidebar.title("Navigation") | |
page = st.sidebar.selectbox("Select a page:", sidebar_pages) | |
if page == "Introduction": | |
introduction() | |
elif page == "Latent Dirichlet Allocation": | |
lda_page() | |
if __name__ == "__main__": | |
main() |