Spaces:
Sleeping
Sleeping
import streamlit as st | |
st.title("Topic Modeling") | |
if "page" not in st.session_state: | |
st.session_state.page = "Home" | |
def navigate_to(page): | |
st.session_state.page = page | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
if st.button("Home"): | |
navigate_to("Home") | |
with col2: | |
if st.button("LDA Baseline"): | |
navigate_to("LDA Baseline") | |
with col3: | |
if st.button("BERTopic"): | |
navigate_to("BERTopic") | |
if st.session_state.page == "Home": | |
st.title("Research & Methodology") | |
st.markdown("Topic Modeling Techniques:") | |
st.markdown("BERT (BERTopic): Explanation of the advanced NLP technique used for analyzing the data, and its application in this project.") | |
st.markdown("LDA as Baseline: Describe the use of Latent Dirichlet Allocation as a baseline for comparison and understanding.") | |
st.markdown("Data Sources: How the data is being collected") | |
st.markdown("Process Flow: Step-by-step breakdown of the analysis process, from data gathering to insights extraction.") | |
if st.session_state.page == "LDA Baseline": | |
st.title("Insights & Findings of Latent Dirichlet Allocation (LDA) Model") | |
st.markdown("Priliminary Results: If available, share initial findings, such as common themes, concerns, or emotions expressed by youth regarding climate anxiety.") | |
st.markdown("Visualizations: ") | |
st.markdown("Key Trends: ") | |
elif st.session_state.page == "BERTopic": | |
st.title("Insights & Findings of BERTopic Model") | |
st.markdown("Priliminary Results: If available, share initial findings, such as common themes, concerns, or emotions expressed by youth regarding climate anxiety.") | |
st.markdown("Visualizations: ") | |
st.markdown("Key Trends: ") |