import streamlit as st st.title("Topic Modeling") if "page" not in st.session_state: st.session_state.page = "Home" def navigate_to(page): st.session_state.page = page col1, col2, col3 = st.columns(3) with col1: if st.button("Home"): navigate_to("Home") with col2: if st.button("LDA Baseline"): navigate_to("LDA Baseline") with col3: if st.button("BERTopic"): navigate_to("BERTopic") if st.session_state.page == "Home": st.title("Research & Methodology") st.markdown("Topic Modeling Techniques:") st.markdown("BERT (BERTopic): Explanation of the advanced NLP technique used for analyzing the data, and its application in this project.") st.markdown("LDA as Baseline: Describe the use of Latent Dirichlet Allocation as a baseline for comparison and understanding.") st.markdown("Data Sources: How the data is being collected") st.markdown("Process Flow: Step-by-step breakdown of the analysis process, from data gathering to insights extraction.") if st.session_state.page == "LDA Baseline": st.title("Insights & Findings of Latent Dirichlet Allocation (LDA) Model") st.markdown("Priliminary Results: If available, share initial findings, such as common themes, concerns, or emotions expressed by youth regarding climate anxiety.") st.markdown("Visualizations: ") st.markdown("Key Trends: ") elif st.session_state.page == "BERTopic": st.title("Insights & Findings of BERTopic Model") st.markdown("Priliminary Results: If available, share initial findings, such as common themes, concerns, or emotions expressed by youth regarding climate anxiety.") st.markdown("Visualizations: ") st.markdown("Key Trends: ")