from PIL import Image import requests import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration model_id = "Salesforce/blip-image-captioning-base" model = BlipForConditionalGeneration.from_pretrained(model_id) processor = BlipProcessor.from_pretrained(model_id) def launch(input): inputs = [] for file in input: inputs.append(processor(Image.open(file), return_tensors="pt")) out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) description = "Simple BLIP test app for image captioning." iface = gr.Interface(launch, description=description, inputs=gr.inputs.File(file_count="multiple"), outputs="text") iface.launch()