File size: 9,303 Bytes
18f8de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from st_aggrid import AgGrid
from st_aggrid.grid_options_builder import GridOptionsBuilder
from st_aggrid.shared import JsCode
from st_aggrid.shared import GridUpdateMode
from transformers import T5Tokenizer, BertForSequenceClassification
import torch
import numpy as np

st.set_page_config(layout="wide")
st.title("Project - Japanese Natural Language Processing (自然言語処理) using Transformers")
st.sidebar.subheader("自然言語処理 トピック")
topic = st.sidebar.radio(label="Select the NLP project topics", options=["Sentiment Analysis"])

st.write("-" * 5)
jp_review_text = None
#JAPANESE_SENTIMENT_PROJECT_PATH = './Japanese Amazon reviews sentiments/'

if topic == "Sentiment Analysis":
    st.markdown(
        "<h2 style='text-align: left; color:#EE82EE; font-size:25px;'><b>Transfer Learning based Japanese Sentiments Analysis using BERT<b></h2>",
        unsafe_allow_html=True)
    st.markdown(
        "<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Japanese Amazon Reviews Data (日本のAmazonレビューデータ)<b></h3>",
        unsafe_allow_html=True)

    amazon_jp_reviews = pd.read_csv("review_val.csv").sample(frac=1,random_state=10).iloc[:16000]

    cellstyle_jscode = JsCode(
        """

    function(params) {

        if (params.value.includes('positive')) {

            return {

                'color': 'black',

                'backgroundColor': '#32CD32'

            }

        } else {

            return {

                'color': 'black',

                'backgroundColor': '#FF7F7F'

            }

        }

    };

    """
    )
    st.write('<style>div.row-widget.stRadio > div{flex-direction:row;justify-content: center;} </style>',
             unsafe_allow_html=True)

    st.write('<style>div.st-bf{flex-direction:column;} div.st-ag{font-weight:bold;padding-left:2px;}</style>',
             unsafe_allow_html=True)

    choose = st.radio("", ("Choose a review from the dataframe below", "Manually write review"))

    SELECT_ONE_REVIEW = "Choose a review from the dataframe below"
    WRITE_REVIEW = "Manually write review"

    gb = GridOptionsBuilder.from_dataframe(amazon_jp_reviews)
    gb.configure_column("sentiment", cellStyle=cellstyle_jscode)
    gb.configure_pagination()
    if choose == SELECT_ONE_REVIEW:
        gb.configure_selection(selection_mode="single", use_checkbox=True, suppressRowDeselection=False)
    gridOptions = gb.build()

    if choose == SELECT_ONE_REVIEW:
        jp_review_choice = AgGrid(amazon_jp_reviews, gridOptions=gridOptions, theme='material',
                                  enable_enterprise_modules=True,
                                  allow_unsafe_jscode=True, update_mode=GridUpdateMode.SELECTION_CHANGED)
        st.info("Select any one the Japanese Reviews by clicking the checkbox. Reviews can be navigated from each page.")
        if len(jp_review_choice['selected_rows']) != 0:
            jp_review_text = jp_review_choice['selected_rows'][0]['review']
            st.markdown(
                "<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Selected Review in JSON (JSONで選択されたレビュー)<b></h3>",
                unsafe_allow_html=True)
            st.write(jp_review_choice['selected_rows'])

    if choose == WRITE_REVIEW:

        AgGrid(amazon_jp_reviews, gridOptions=gridOptions, theme='material',
               enable_enterprise_modules=True,
               allow_unsafe_jscode=True)
        with open("test_reviews_jp.csv", "rb") as file:
            st.download_button(label="Download Additional Japanese Reviews", data=file,
                               file_name="Additional Japanese Reviews.csv")
        st.info("Additional subset of Japanese Reviews can be downloaded and any review can be copied & pasted in text area.")
        sample_japanese_review_input = "子供のレッスンバッグ用に購入。 思ったより大きく、ピアノ教本を入れるには充分でした。中は汚れてました。 何より驚いたのは、商品の梱包。 2つ折は許せるが、透明ビニール袋の底思いっきり空いてますけど? 何これ?包むっていうか挟んで終わり?底が全開している。 引っ張れば誰でも中身の注文書も、商品も見れる状態って何なの? 個人情報が晒されて、商品も粗末な扱いで嫌な気持ちでした。 郵送で中身が無事のが奇跡じゃないでしょうか? ありえない"
        jp_review_text = st.text_area(label="Press 'Ctrl+Enter' after writing review in below text area",
                                      value=sample_japanese_review_input)
        if len(jp_review_text) == 0:
            st.error("Input text cannot empty. Either write the japanese review in text area manually or select the review from the grid.")

    if jp_review_text:
        st.markdown(
            "<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Sentence-Piece based Japanese Tokenizer using RoBERTA<b></h3>",
            unsafe_allow_html=True)
        tokens_column, tokenID_column = st.columns(2)
        tokenizer = T5Tokenizer.from_pretrained('rinna/japanese-roberta-base')
        tokens = tokenizer.tokenize(jp_review_text)
        token_ids = tokenizer.convert_tokens_to_ids(tokens)
        with tokens_column:
            token_expander = st.expander("Expand to see the tokens", expanded=False)
            with token_expander:
                st.write(tokens)
        with tokenID_column:
            tokenID_expander = st.expander("Expand to see the token IDs", expanded=False)
            with tokenID_expander:
                st.write(token_ids)

        st.markdown(
            "<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Encoded Japanese Review Text to get Input IDs and attention masks as PyTorch Tensor<b></h3>",
            unsafe_allow_html=True)
        encoded_data = tokenizer.batch_encode_plus(np.array([jp_review_text]).astype('object'),
                                                   add_special_tokens=True,
                                                   return_attention_mask=True,
                                                   padding=True,
                                                   max_length=200,
                                                   return_tensors='pt',
                                                   truncation=True)
        input_ids = encoded_data['input_ids']
        attention_masks = encoded_data['attention_mask']
        input_ids_column, attention_masks_column = st.columns(2)
        with input_ids_column:
            input_ids_expander = st.expander("Expand to see the input IDs tensor")
            with input_ids_expander:
                st.write(input_ids)
        with attention_masks_column:
            attention_masks_expander = st.expander("Expand to see the attention mask tensor")
            with attention_masks_expander:
                st.write(attention_masks)

        st.markdown(
            "<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Predict Sentiment of review using Fine-Tuned Japanese BERT<b></h3>",
            unsafe_allow_html=True)

        label_dict = {'positive': 1, 'negative': 0}
        if st.button("Predict Sentiment"):
            with st.spinner("Wait.."):
                predictions = []
                model = BertForSequenceClassification.from_pretrained("shubh2014shiv/jp_review_sentiments_amzn",
                                                                      num_labels=len(label_dict),
                                                                      output_attentions=False,
                                                                      output_hidden_states=False)
                #model.load_state_dict(
                #    torch.load(JAPANESE_SENTIMENT_PROJECT_PATH + 'FineTuneJapaneseBert_AmazonReviewSentiments.pt',
                #               map_location=torch.device('cpu')))

                inputs = {
                    'input_ids': input_ids,
                    'attention_mask': attention_masks
                }

                with torch.no_grad():
                    outputs = model(**inputs)

                logits = outputs.logits
                logits = logits.detach().cpu().numpy()
                scores = 1 / (1 + np.exp(-1 * logits))

                result = {"TEXT": jp_review_text,'NEGATIVE': scores[0][0], 'POSITIVE': scores[0][1]}

                result_col,graph_col = st.columns(2)
                with result_col:
                    st.write(result)
                with graph_col:
                    fig = px.bar(x=['NEGATIVE','POSITIVE'],y=[result['NEGATIVE'],result['POSITIVE']])
                    fig.update_layout(title="Probability distribution of Sentiment for the given text",\
                                      yaxis_title="Probability")
                    fig.update_traces(marker_color=['#FF7F7F','#32CD32'])
                    st.plotly_chart(fig)