Spaces:
Runtime error
Runtime error
shubh2014shiv
commited on
Commit
•
e9cddb1
1
Parent(s):
98af3bf
Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,49 @@ from st_aggrid.shared import GridUpdateMode
|
|
9 |
from transformers import T5Tokenizer, BertForSequenceClassification,AutoTokenizer, AutoModelForSeq2SeqLM
|
10 |
import torch
|
11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
st.set_page_config(layout="wide")
|
14 |
st.title("Project - Japanese Natural Language Processing (自然言語処理) using Transformers")
|
15 |
st.sidebar.subheader("自然言語処理 トピック")
|
16 |
-
topic = st.sidebar.radio(label="Select the NLP project topics", options=["Sentiment Analysis","Text Summarization"])
|
17 |
|
18 |
st.write("-" * 5)
|
19 |
jp_review_text = None
|
@@ -235,3 +273,89 @@ elif topic == "Text Summarization":
|
|
235 |
unsafe_allow_html=True)
|
236 |
|
237 |
st.write(summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from transformers import T5Tokenizer, BertForSequenceClassification,AutoTokenizer, AutoModelForSeq2SeqLM
|
10 |
import torch
|
11 |
import numpy as np
|
12 |
+
import json
|
13 |
+
from transformers import AutoTokenizer, BertTokenizer, AutoModelWithLMHead
|
14 |
+
import pytorch_lightning as pl
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
# Defining some functions for caching purpose by streamlit
|
18 |
+
class TranslationModel(pl.LightningModule):
|
19 |
+
def __init__(self):
|
20 |
+
super().__init__()
|
21 |
+
self.model = AutoModelWithLMHead.from_pretrained("Helsinki-NLP/opus-mt-ja-en", return_dict=True)
|
22 |
+
|
23 |
+
|
24 |
+
@st.experimental_singleton
|
25 |
+
def loadFineTunedJaEn_NMT_Model():
|
26 |
+
save_dest = Path('model')
|
27 |
+
save_dest.mkdir(exist_ok=True)
|
28 |
+
|
29 |
+
f_checkpoint = Path("model/best-checkpoint.ckpt")
|
30 |
+
|
31 |
+
if not f_checkpoint.exists():
|
32 |
+
with st.spinner("Downloading model.This may take a while! \n Don't refresh or close this page!"):
|
33 |
+
from GD_download import download_file_from_google_drive
|
34 |
+
download_file_from_google_drive('1CZQKGj9hSqj7kEuJp_jm7bNVXrbcFsgP', f_checkpoint)
|
35 |
+
|
36 |
+
trained_model = TranslationModel.load_from_checkpoint(f_checkpoint)
|
37 |
+
|
38 |
+
return trained_model
|
39 |
+
|
40 |
+
@st.experimental_singleton
|
41 |
+
def getJpEn_Tokenizers():
|
42 |
+
try:
|
43 |
+
with st.spinner("Downloading English and Japanese Transformer Tokenizers"):
|
44 |
+
ja_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ja-en")
|
45 |
+
en_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
46 |
+
except:
|
47 |
+
st.error("Issue with downloading tokenizers")
|
48 |
+
|
49 |
+
return ja_tokenizer, en_tokenizer
|
50 |
|
51 |
st.set_page_config(layout="wide")
|
52 |
st.title("Project - Japanese Natural Language Processing (自然言語処理) using Transformers")
|
53 |
st.sidebar.subheader("自然言語処理 トピック")
|
54 |
+
topic = st.sidebar.radio(label="Select the NLP project topics", options=["Sentiment Analysis","Text Summarization","Japanese to English Translation"])
|
55 |
|
56 |
st.write("-" * 5)
|
57 |
jp_review_text = None
|
|
|
273 |
unsafe_allow_html=True)
|
274 |
|
275 |
st.write(summary)
|
276 |
+
elif topic == "Japanese to English Translation":
|
277 |
+
st.markdown(
|
278 |
+
"<h2 style='text-align: left; color:#EE82EE; font-size:25px;'><b>Japanese to English translation (for short sentences)<b></h2>",
|
279 |
+
unsafe_allow_html=True)
|
280 |
+
st.markdown(
|
281 |
+
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Business Scene Dialog Japanese-English Corpus<b></h3>",
|
282 |
+
unsafe_allow_html=True)
|
283 |
+
|
284 |
+
st.write("Below given Japanese-English pair is from 'Business Scene Dialog Corpus' by the University of Tokyo")
|
285 |
+
link = '[Corpus GitHub Link](https://github.com/tsuruoka-lab/BSD)'
|
286 |
+
st.markdown(link, unsafe_allow_html=True)
|
287 |
+
|
288 |
+
bsd_more_info = st.expander(label="Expand to get more information on data and training report")
|
289 |
+
with bsd_more_info:
|
290 |
+
st.markdown(
|
291 |
+
"<h3 style='text-align: left; color:#F63366; font-size:12px;'><b>Training Dataset<b></h3>",
|
292 |
+
unsafe_allow_html=True)
|
293 |
+
st.write("The corpus has total 20,000 Japanese-English Business Dialog pairs. The fined-tuned Transformer model is validated on 670 Japanese-English Business Dialog pairs")
|
294 |
+
|
295 |
+
st.markdown(
|
296 |
+
"<h3 style='text-align: left; color:#F63366; font-size:12px;'><b>Training Report<b></h3>",
|
297 |
+
unsafe_allow_html=True)
|
298 |
+
st.write(
|
299 |
+
"The Dashboard for training result on Tensorboard is [here](https://tensorboard.dev/experiment/eWhxt1i2RuaU64krYtORhw/)")
|
300 |
+
|
301 |
+
with open("./BSD_ja-en_val.json", encoding='utf-8') as f:
|
302 |
+
bsd_sample_data = json.load(f)
|
303 |
+
|
304 |
+
en, ja = [], []
|
305 |
+
for i in range(len(bsd_sample_data)):
|
306 |
+
for j in range(len(bsd_sample_data[i]['conversation'])):
|
307 |
+
en.append(bsd_sample_data[i]['conversation'][j]['en_sentence'])
|
308 |
+
ja.append(bsd_sample_data[i]['conversation'][j]['ja_sentence'])
|
309 |
+
|
310 |
+
df = pd.DataFrame.from_dict({'Japanese': ja, 'English': en})
|
311 |
+
gb = GridOptionsBuilder.from_dataframe(df)
|
312 |
+
gb.configure_pagination()
|
313 |
+
gb.configure_selection(selection_mode="single", use_checkbox=True, suppressRowDeselection=False)
|
314 |
+
gridOptions = gb.build()
|
315 |
+
translation_text = AgGrid(df, gridOptions=gridOptions, theme='material',
|
316 |
+
enable_enterprise_modules=True,
|
317 |
+
allow_unsafe_jscode=True, update_mode=GridUpdateMode.SELECTION_CHANGED)
|
318 |
+
if len(translation_text['selected_rows']) != 0:
|
319 |
+
bsd_jp = translation_text['selected_rows'][0]['Japanese']
|
320 |
+
st.markdown(
|
321 |
+
"<h2 style='text-align: left; color:#32CD32; font-size:25px;'><b>Business Scene Dialog in Japanese (日本語でのビジネスシーンダイアログ)<b></h2>",
|
322 |
+
unsafe_allow_html=True)
|
323 |
+
st.write(bsd_jp)
|
324 |
+
|
325 |
+
if st.button("Translate"):
|
326 |
+
ja_tokenizer, en_tokenizer = getJpEn_Tokenizers()
|
327 |
+
trained_model = loadFineTunedJaEn_NMT_Model()
|
328 |
+
trained_model.freeze()
|
329 |
+
|
330 |
+
|
331 |
+
def translate(text):
|
332 |
+
text_encoding = ja_tokenizer(
|
333 |
+
text,
|
334 |
+
max_length=100,
|
335 |
+
padding="max_length",
|
336 |
+
truncation=True,
|
337 |
+
return_attention_mask=True,
|
338 |
+
add_special_tokens=True,
|
339 |
+
return_tensors='pt'
|
340 |
+
)
|
341 |
+
|
342 |
+
generated_ids = trained_model.model.generate(
|
343 |
+
input_ids=text_encoding['input_ids'],
|
344 |
+
attention_mask=text_encoding['attention_mask'],
|
345 |
+
max_length=100,
|
346 |
+
num_beams=2,
|
347 |
+
repetition_penalty=2.5,
|
348 |
+
length_penalty=1.0,
|
349 |
+
early_stopping=True
|
350 |
+
)
|
351 |
+
|
352 |
+
preds = [en_tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True) for
|
353 |
+
gen_id in generated_ids]
|
354 |
+
|
355 |
+
return "".join(preds)[5:]
|
356 |
+
|
357 |
+
|
358 |
+
st.markdown(
|
359 |
+
"<h2 style='text-align: left; color:#32CD32; font-size:25px;'><b>Translated Dialog in English (英語の翻訳されたダイアログ)<b></h2>",
|
360 |
+
unsafe_allow_html=True)
|
361 |
+
st.write(translate(bsd_jp))
|