Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
|
|
|
|
|
|
|
|
5 |
st.title("Meta LLaMA Text Generation")
|
6 |
|
7 |
@st.cache_resource
|
@@ -9,16 +14,28 @@ def load_model():
|
|
9 |
model_name = "meta-llama/Meta-Llama-3-8B"
|
10 |
access_token = os.getenv('hf')
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=access_token)
|
14 |
return tokenizer, model
|
15 |
|
16 |
tokenizer, model = load_model()
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
if st.button("Generate Text"):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
+
import logging
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
+
# Set up logging
|
7 |
+
logging.basicConfig(level=logging.INFO)
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
st.title("Meta LLaMA Text Generation")
|
11 |
|
12 |
@st.cache_resource
|
|
|
14 |
model_name = "meta-llama/Meta-Llama-3-8B"
|
15 |
access_token = os.getenv('hf')
|
16 |
|
17 |
+
if not access_token:
|
18 |
+
st.error("Hugging Face access token is not set. Please set the environment variable 'hf'.")
|
19 |
+
return None, None
|
20 |
+
|
21 |
+
logger.info("Loading tokenizer and model...")
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
|
23 |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=access_token)
|
24 |
return tokenizer, model
|
25 |
|
26 |
tokenizer, model = load_model()
|
27 |
|
28 |
+
if tokenizer is not None and model is not None:
|
29 |
+
prompt = st.text_input("Enter a prompt:", "Once upon a time")
|
30 |
|
31 |
+
if st.button("Generate Text"):
|
32 |
+
try:
|
33 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
34 |
+
outputs = model.generate(**inputs, max_length=50)
|
35 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
st.write(generated_text)
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"An error occurred: {e}")
|
39 |
+
logger.error(f"An error occurred during text generation: {e}")
|
40 |
+
else:
|
41 |
+
st.error("Failed to load the model. Check the logs for more details.")
|