import streamlit as st import os from transformers import AutoModelForCausalLM, AutoTokenizer st.title("Meta LLaMA Text Generation") @st.cache_resource def load_model(): model_name = "meta-llama/Meta-Llama-3-8B" access_token = os.getenv('hf') tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token) model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=access_token) return tokenizer, model tokenizer, model = load_model() prompt = st.text_input("Enter a prompt:", "Once upon a time") if st.button("Generate Text"): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write(generated_text)