File size: 19,287 Bytes
93fb7cb
 
 
 
 
 
 
 
c01e49c
 
 
 
 
 
 
93fb7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c01e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fb7cb
c01e49c
93fb7cb
c01e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fb7cb
c01e49c
 
 
 
 
 
 
93fb7cb
c01e49c
93fb7cb
 
c01e49c
 
 
 
 
 
 
 
 
93fb7cb
 
c01e49c
93fb7cb
c01e49c
 
 
93fb7cb
c01e49c
93fb7cb
c01e49c
93fb7cb
 
 
c01e49c
 
 
 
 
 
 
93fb7cb
c01e49c
 
 
 
93fb7cb
c01e49c
 
 
93fb7cb
c01e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fb7cb
c01e49c
93fb7cb
c01e49c
93fb7cb
 
c01e49c
 
 
 
 
 
 
 
 
93fb7cb
 
c01e49c
93fb7cb
c01e49c
 
 
 
93fb7cb
 
c01e49c
93fb7cb
 
c01e49c
 
 
 
 
 
 
 
 
 
 
93fb7cb
 
 
 
c01e49c
93fb7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
c01e49c
 
 
 
93fb7cb
c01e49c
 
93fb7cb
c01e49c
 
93fb7cb
c01e49c
 
93fb7cb
 
 
c01e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
93fb7cb
 
 
 
 
 
 
 
 
 
c01e49c
93fb7cb
 
 
 
 
 
 
 
c01e49c
93fb7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
c01e49c
 
 
 
93fb7cb
c01e49c
 
 
 
93fb7cb
 
 
 
 
c01e49c
93fb7cb
 
c01e49c
93fb7cb
 
 
 
c01e49c
93fb7cb
 
 
 
 
 
 
c01e49c
93fb7cb
 
 
 
 
 
 
 
 
 
 
 
 
c01e49c
93fb7cb
 
 
 
 
 
c01e49c
93fb7cb
 
 
 
 
c01e49c
93fb7cb
 
 
 
c01e49c
 
93fb7cb
c01e49c
 
93fb7cb
 
c01e49c
 
 
 
 
 
 
 
 
93fb7cb
c01e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fb7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c01e49c
93fb7cb
c01e49c
93fb7cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import gradio as gr
import requests
from bs4 import BeautifulSoup
from openai import OpenAI
import json
import re
from urllib.parse import urljoin, urlparse
import time
import urllib3
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import ssl

# Disable SSL warnings
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

class WebScrapingTool:
    def __init__(self):
        self.client = None
        self.system_prompt = """You are a specialized web data extraction assistant. Your core purpose is to browse and analyze the content of web pages based on user instructions, and return structured or unstructured information from the provided URL. Your capabilities include:

1. Navigating and reading web page content from a given URL.
2. Extracting textual content including headings, paragraphs, lists, and metadata.
3. Identifying and extracting HTML tables and presenting them in a clean, structured format.
4. Creating new, custom tables based on user queries by processing, reorganizing, or filtering the content found on the source page.

You must always follow these guidelines:
- Accurately extract and summarize both structured (tables, lists) and unstructured (paragraphs, articles) content.
- Clearly separate different types of data (e.g., summaries, tables, bullet points).
- When extracting textual content:
  - Maintain original meaning, structure, and tone.
  - Capture all relevant sections based on user instructions (e.g., only the "Overview" or "Methodology" sections).
- When extracting tables:
  - Preserve headers and align row data correctly.
  - Identify and differentiate multiple tables, if present.
- When creating custom tables:
  - Include only the relevant columns as per the user request.
  - Sort, filter, and reorganize data accordingly.
  - Use clear and consistent headers.

You must not hallucinate or infer data not present on the page. If content is missing, unclear, or restricted, say so explicitly.

Always respond based on the actual content from the provided link. If the page fails to load or cannot be accessed, inform the user immediately.

Your role is to act as an intelligent browser and data interpreter β€” able to read and reshape any web content to meet user needs."""

    def setup_client(self, api_key):
        """Initialize OpenAI client with OpenRouter"""
        try:
            self.client = OpenAI(
                base_url="https://openrouter.ai/api/v1",
                api_key=api_key,
            )
            return True, "API client initialized successfully!"
        except Exception as e:
            return False, f"Failed to initialize API client: {str(e)}"

    def create_session(self):
        """Create a robust session with retry strategy and proper headers"""
        session = requests.Session()
        
        # Define retry strategy
        retry_strategy = Retry(
            total=3,
            status_forcelist=[429, 500, 502, 503, 504],
            method_whitelist=["HEAD", "GET", "OPTIONS"],
            backoff_factor=1
        )
        
        # Mount adapter with retry strategy
        adapter = HTTPAdapter(max_retries=retry_strategy)
        session.mount("http://", adapter)
        session.mount("https://", adapter)
        
        # Set comprehensive headers to mimic real browser
        session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
            'Accept-Language': 'en-US,en;q=0.9',
            'Accept-Encoding': 'gzip, deflate, br',
            'DNT': '1',
            'Connection': 'keep-alive',
            'Upgrade-Insecure-Requests': '1',
            'Sec-Fetch-Dest': 'document',
            'Sec-Fetch-Mode': 'navigate',
            'Sec-Fetch-Site': 'none',
            'Sec-Fetch-User': '?1',
            'Cache-Control': 'max-age=0'
        })
        
        return session

    def scrape_webpage(self, url):
        """Scrape webpage content with enhanced error handling and timeouts"""
        try:
            session = self.create_session()
            
            # Multiple timeout attempts with increasing duration
            timeout_attempts = [15, 30, 45]
            
            for timeout in timeout_attempts:
                try:
                    print(f"Attempting to fetch {url} with {timeout}s timeout...")
                    
                    response = session.get(
                        url, 
                        timeout=timeout,
                        verify=False,  # Disable SSL verification for problematic sites
                        allow_redirects=True,
                        stream=False
                    )
                    
                    response.raise_for_status()
                    break
                    
                except requests.exceptions.Timeout:
                    if timeout == timeout_attempts[-1]:  # Last attempt
                        return {
                            'success': False,
                            'error': f"Connection timed out after multiple attempts. The website may be slow or blocking automated requests."
                        }
                    continue
                except requests.exceptions.SSLError:
                    # Try with different SSL context
                    try:
                        response = session.get(
                            url, 
                            timeout=timeout,
                            verify=False,
                            allow_redirects=True
                        )
                        response.raise_for_status()
                        break
                    except:
                        continue
            
            # Check if we got a response
            if 'response' not in locals():
                return {
                    'success': False,
                    'error': "Failed to establish connection after multiple attempts"
                }
            
            # Check content type
            content_type = response.headers.get('content-type', '').lower()
            if 'text/html' not in content_type and 'text/plain' not in content_type:
                return {
                    'success': False,
                    'error': f"Invalid content type: {content_type}. Expected HTML content."
                }
            
            # Parse HTML content
            soup = BeautifulSoup(response.content, 'html.parser')
            
            # Remove unwanted elements
            for element in soup(["script", "style", "nav", "footer", "header", "aside", "noscript", "iframe"]):
                element.decompose()
            
            # Remove elements with common ad/tracking classes
            ad_classes = ['ad', 'advertisement', 'banner', 'popup', 'modal', 'cookie', 'newsletter']
            for class_name in ad_classes:
                for element in soup.find_all(class_=re.compile(class_name, re.I)):
                    element.decompose()
            
            # Extract text content
            text_content = soup.get_text(separator=' ', strip=True)
            
            # Clean up text - remove extra whitespace
            text_content = re.sub(r'\s+', ' ', text_content)
            text_content = text_content.strip()
            
            # Extract tables with improved structure
            tables = []
            for i, table in enumerate(soup.find_all('table')):
                table_data = []
                headers = []
                
                # Try to find headers in various ways
                header_row = table.find('thead')
                if header_row:
                    header_row = header_row.find('tr')
                else:
                    header_row = table.find('tr')
                
                if header_row:
                    headers = []
                    for th in header_row.find_all(['th', 'td']):
                        header_text = th.get_text(strip=True)
                        headers.append(header_text if header_text else f"Column_{len(headers)+1}")
                
                # Extract all rows (skip header if it was already processed)
                rows = table.find_all('tr')
                start_idx = 1 if header_row and header_row in rows else 0
                
                for row in rows[start_idx:]:
                    cells = row.find_all(['td', 'th'])
                    if cells:
                        row_data = []
                        for cell in cells:
                            cell_text = cell.get_text(strip=True)
                            row_data.append(cell_text)
                        
                        if row_data and any(cell.strip() for cell in row_data):  # Skip empty rows
                            table_data.append(row_data)
                
                if table_data:
                    # Ensure headers match data columns
                    max_cols = max(len(row) for row in table_data) if table_data else 0
                    if len(headers) < max_cols:
                        headers.extend([f"Column_{i+1}" for i in range(len(headers), max_cols)])
                    elif len(headers) > max_cols:
                        headers = headers[:max_cols]
                    
                    tables.append({
                        'id': i + 1,
                        'headers': headers,
                        'data': table_data[:50]  # Limit rows to prevent overwhelming
                    })
            
            # Extract metadata
            title = soup.title.string.strip() if soup.title and soup.title.string else "No title found"
            
            # Extract meta description
            meta_desc = ""
            desc_tag = soup.find('meta', attrs={'name': 'description'})
            if desc_tag and desc_tag.get('content'):
                meta_desc = desc_tag['content'].strip()
            
            return {
                'success': True,
                'text': text_content[:20000],  # Limit text length
                'tables': tables,
                'title': title,
                'meta_description': meta_desc,
                'url': url,
                'content_length': len(text_content)
            }
            
        except requests.exceptions.ConnectionError as e:
            return {
                'success': False,
                'error': f"Connection failed: {str(e)}. The website may be down or blocking requests."
            }
        except requests.exceptions.HTTPError as e:
            return {
                'success': False,
                'error': f"HTTP Error {e.response.status_code}: {e.response.reason}"
            }
        except requests.exceptions.RequestException as e:
            return {
                'success': False,
                'error': f"Request failed: {str(e)}"
            }
        except Exception as e:
            return {
                'success': False,
                'error': f"Unexpected error while processing webpage: {str(e)}"
            }

    def analyze_content(self, scraped_data, user_query, api_key):
        """Analyze scraped content using DeepSeek V3"""
        if not self.client:
            success, message = self.setup_client(api_key)
            if not success:
                return f"Error: {message}"
        
        if not scraped_data['success']:
            return f"Error scraping webpage: {scraped_data['error']}"
        
        # Prepare content for AI analysis
        content_text = f"""
WEBPAGE ANALYSIS REQUEST
========================

URL: {scraped_data['url']}
Title: {scraped_data['title']}
Content Length: {scraped_data['content_length']} characters
Tables Found: {len(scraped_data['tables'])}

META DESCRIPTION:
{scraped_data['meta_description']}

MAIN CONTENT:
{scraped_data['text']}
"""
        
        if scraped_data['tables']:
            content_text += f"\n\nSTRUCTURED DATA - {len(scraped_data['tables'])} TABLE(S) FOUND:\n"
            content_text += "=" * 50 + "\n"
            
            for table in scraped_data['tables']:
                content_text += f"\nTABLE {table['id']}:\n"
                content_text += f"Headers: {' | '.join(table['headers'])}\n"
                content_text += "-" * 50 + "\n"
                
                for i, row in enumerate(table['data'][:10]):  # Show first 10 rows
                    content_text += f"Row {i+1}: {' | '.join(str(cell) for cell in row)}\n"
                
                if len(table['data']) > 10:
                    content_text += f"... and {len(table['data']) - 10} more rows\n"
                content_text += "\n"
        
        try:
            completion = self.client.chat.completions.create(
                extra_headers={
                    "HTTP-Referer": "https://gradio-web-scraper.com",
                    "X-Title": "AI Web Scraping Tool",
                },
                model="deepseek/deepseek-chat-v3-0324:free",
                messages=[
                    {"role": "system", "content": self.system_prompt},
                    {"role": "user", "content": f"{content_text}\n\nUSER REQUEST:\n{user_query}\n\nPlease analyze the above webpage content and fulfill the user's request. Be thorough and accurate."}
                ],
                temperature=0.1,
                max_tokens=4000
            )
            
            return completion.choices[0].message.content
            
        except Exception as e:
            return f"Error analyzing content with AI: {str(e)}"

def create_interface():
    tool = WebScrapingTool()
    
    def process_request(api_key, url, user_query):
        if not api_key.strip():
            return "❌ Please enter your OpenRouter API key"
        
        if not url.strip():
            return "❌ Please enter a valid URL"
        
        if not user_query.strip():
            return "❌ Please enter your analysis query"
        
        # Validate URL format
        if not url.startswith(('http://', 'https://')):
            url = 'https://' + url
        
        # Add progress updates
        yield "πŸ”„ Initializing web scraper..."
        time.sleep(0.5)
        
        yield "🌐 Fetching webpage content (this may take a moment)..."
        
        # Scrape webpage
        scraped_data = tool.scrape_webpage(url)
        
        if not scraped_data['success']:
            yield f"❌ Scraping Failed: {scraped_data['error']}"
            return
        
        yield f"βœ… Successfully scraped webpage!\nπŸ“„ Title: {scraped_data['title']}\nπŸ“Š Found {len(scraped_data['tables'])} tables\nπŸ“ Content: {scraped_data['content_length']} characters\n\nπŸ€– Analyzing content with DeepSeek V3..."
        
        # Analyze content
        result = tool.analyze_content(scraped_data, user_query, api_key)
        
        yield f"βœ… Analysis Complete!\n{'='*50}\n\n{result}"
    
    # Create Gradio interface
    with gr.Blocks(title="AI Web Scraping Tool", theme=gr.themes.Soft()) as app:
        gr.Markdown("""
        # πŸ€– AI Web Scraping Tool
        ### Powered by DeepSeek V3 & OpenRouter
        
        Extract and analyze web content using advanced AI. The tool handles timeouts, SSL issues, and provides robust scraping capabilities.
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                api_key_input = gr.Textbox(
                    label="πŸ”‘ OpenRouter API Key",
                    placeholder="Enter your OpenRouter API key here...",
                    type="password",
                    info="Get your free API key from openrouter.ai"
                )
                
                url_input = gr.Textbox(
                    label="🌐 Website URL",
                    placeholder="https://example.com or just example.com",
                    info="Enter the URL you want to scrape and analyze"
                )
                
                query_input = gr.Textbox(
                    label="πŸ“ Analysis Query",
                    placeholder="What do you want to extract? (e.g., 'Extract main points and create a summary table')",
                    lines=4,
                    info="Describe what information you want to extract from the webpage"
                )
                
                with gr.Row():
                    analyze_btn = gr.Button("πŸš€ Analyze Website", variant="primary", size="lg")
                    clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
            
            with gr.Column(scale=3):
                output = gr.Textbox(
                    label="πŸ“Š Analysis Results",
                    lines=25,
                    max_lines=40,
                    show_copy_button=True,
                    interactive=False,
                    placeholder="Results will appear here after analysis..."
                )
        
        # Tips and Examples
        with gr.Accordion("πŸ’‘ Usage Tips & Examples", open=False):
            gr.Markdown("""
            ### 🎯 Example Analysis Queries:
            - **Data Extraction**: *"Extract all numerical data and organize it in a table format"*
            - **Content Summary**: *"Summarize the main points in bullet format with key statistics"*
            - **Table Processing**: *"Find all tables and convert them to a single consolidated format"*
            - **Specific Information**: *"Extract contact information, prices, or product details"*
            - **Comparison**: *"Compare different items/options mentioned and create a comparison table"*
            
            ### πŸ”§ Technical Notes:
            - **Multiple Timeouts**: Tool tries 15s, 30s, then 45s timeouts automatically
            - **SSL Handling**: Bypasses SSL issues for problematic websites
            - **Content Filtering**: Removes ads, popups, and unnecessary elements
            - **Table Detection**: Automatically finds and structures tabular data
            - **Error Recovery**: Handles connection issues and provides clear error messages
            
            ### 🌐 Works Well With:
            - News websites (BBC, CNN, Reuters)
            - Government sites (IMF, WHO, official statistics)
            - Wikipedia and educational content
            - E-commerce product pages
            - Financial data sites (Yahoo Finance, MarketWatch)
            - Research papers and academic sites
            """)
        
        # Event handlers
        analyze_btn.click(
            fn=process_request,
            inputs=[api_key_input, url_input, query_input],
            outputs=output,
            show_progress=True
        )
        
        clear_btn.click(
            fn=lambda: ("", "", "", ""),
            outputs=[api_key_input, url_input, query_input, output]
        )
    
    return app

if __name__ == "__main__":
    # Create and launch the app
    app = create_interface()
    
    # Launch with enhanced configuration
    app.launch(
        share=True
    )