Spaces:
Running
Running
File size: 19,287 Bytes
93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import gradio as gr
import requests
from bs4 import BeautifulSoup
from openai import OpenAI
import json
import re
from urllib.parse import urljoin, urlparse
import time
import urllib3
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import ssl
# Disable SSL warnings
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
class WebScrapingTool:
def __init__(self):
self.client = None
self.system_prompt = """You are a specialized web data extraction assistant. Your core purpose is to browse and analyze the content of web pages based on user instructions, and return structured or unstructured information from the provided URL. Your capabilities include:
1. Navigating and reading web page content from a given URL.
2. Extracting textual content including headings, paragraphs, lists, and metadata.
3. Identifying and extracting HTML tables and presenting them in a clean, structured format.
4. Creating new, custom tables based on user queries by processing, reorganizing, or filtering the content found on the source page.
You must always follow these guidelines:
- Accurately extract and summarize both structured (tables, lists) and unstructured (paragraphs, articles) content.
- Clearly separate different types of data (e.g., summaries, tables, bullet points).
- When extracting textual content:
- Maintain original meaning, structure, and tone.
- Capture all relevant sections based on user instructions (e.g., only the "Overview" or "Methodology" sections).
- When extracting tables:
- Preserve headers and align row data correctly.
- Identify and differentiate multiple tables, if present.
- When creating custom tables:
- Include only the relevant columns as per the user request.
- Sort, filter, and reorganize data accordingly.
- Use clear and consistent headers.
You must not hallucinate or infer data not present on the page. If content is missing, unclear, or restricted, say so explicitly.
Always respond based on the actual content from the provided link. If the page fails to load or cannot be accessed, inform the user immediately.
Your role is to act as an intelligent browser and data interpreter β able to read and reshape any web content to meet user needs."""
def setup_client(self, api_key):
"""Initialize OpenAI client with OpenRouter"""
try:
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
return True, "API client initialized successfully!"
except Exception as e:
return False, f"Failed to initialize API client: {str(e)}"
def create_session(self):
"""Create a robust session with retry strategy and proper headers"""
session = requests.Session()
# Define retry strategy
retry_strategy = Retry(
total=3,
status_forcelist=[429, 500, 502, 503, 504],
method_whitelist=["HEAD", "GET", "OPTIONS"],
backoff_factor=1
)
# Mount adapter with retry strategy
adapter = HTTPAdapter(max_retries=retry_strategy)
session.mount("http://", adapter)
session.mount("https://", adapter)
# Set comprehensive headers to mimic real browser
session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
'Sec-Fetch-Dest': 'document',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'Cache-Control': 'max-age=0'
})
return session
def scrape_webpage(self, url):
"""Scrape webpage content with enhanced error handling and timeouts"""
try:
session = self.create_session()
# Multiple timeout attempts with increasing duration
timeout_attempts = [15, 30, 45]
for timeout in timeout_attempts:
try:
print(f"Attempting to fetch {url} with {timeout}s timeout...")
response = session.get(
url,
timeout=timeout,
verify=False, # Disable SSL verification for problematic sites
allow_redirects=True,
stream=False
)
response.raise_for_status()
break
except requests.exceptions.Timeout:
if timeout == timeout_attempts[-1]: # Last attempt
return {
'success': False,
'error': f"Connection timed out after multiple attempts. The website may be slow or blocking automated requests."
}
continue
except requests.exceptions.SSLError:
# Try with different SSL context
try:
response = session.get(
url,
timeout=timeout,
verify=False,
allow_redirects=True
)
response.raise_for_status()
break
except:
continue
# Check if we got a response
if 'response' not in locals():
return {
'success': False,
'error': "Failed to establish connection after multiple attempts"
}
# Check content type
content_type = response.headers.get('content-type', '').lower()
if 'text/html' not in content_type and 'text/plain' not in content_type:
return {
'success': False,
'error': f"Invalid content type: {content_type}. Expected HTML content."
}
# Parse HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Remove unwanted elements
for element in soup(["script", "style", "nav", "footer", "header", "aside", "noscript", "iframe"]):
element.decompose()
# Remove elements with common ad/tracking classes
ad_classes = ['ad', 'advertisement', 'banner', 'popup', 'modal', 'cookie', 'newsletter']
for class_name in ad_classes:
for element in soup.find_all(class_=re.compile(class_name, re.I)):
element.decompose()
# Extract text content
text_content = soup.get_text(separator=' ', strip=True)
# Clean up text - remove extra whitespace
text_content = re.sub(r'\s+', ' ', text_content)
text_content = text_content.strip()
# Extract tables with improved structure
tables = []
for i, table in enumerate(soup.find_all('table')):
table_data = []
headers = []
# Try to find headers in various ways
header_row = table.find('thead')
if header_row:
header_row = header_row.find('tr')
else:
header_row = table.find('tr')
if header_row:
headers = []
for th in header_row.find_all(['th', 'td']):
header_text = th.get_text(strip=True)
headers.append(header_text if header_text else f"Column_{len(headers)+1}")
# Extract all rows (skip header if it was already processed)
rows = table.find_all('tr')
start_idx = 1 if header_row and header_row in rows else 0
for row in rows[start_idx:]:
cells = row.find_all(['td', 'th'])
if cells:
row_data = []
for cell in cells:
cell_text = cell.get_text(strip=True)
row_data.append(cell_text)
if row_data and any(cell.strip() for cell in row_data): # Skip empty rows
table_data.append(row_data)
if table_data:
# Ensure headers match data columns
max_cols = max(len(row) for row in table_data) if table_data else 0
if len(headers) < max_cols:
headers.extend([f"Column_{i+1}" for i in range(len(headers), max_cols)])
elif len(headers) > max_cols:
headers = headers[:max_cols]
tables.append({
'id': i + 1,
'headers': headers,
'data': table_data[:50] # Limit rows to prevent overwhelming
})
# Extract metadata
title = soup.title.string.strip() if soup.title and soup.title.string else "No title found"
# Extract meta description
meta_desc = ""
desc_tag = soup.find('meta', attrs={'name': 'description'})
if desc_tag and desc_tag.get('content'):
meta_desc = desc_tag['content'].strip()
return {
'success': True,
'text': text_content[:20000], # Limit text length
'tables': tables,
'title': title,
'meta_description': meta_desc,
'url': url,
'content_length': len(text_content)
}
except requests.exceptions.ConnectionError as e:
return {
'success': False,
'error': f"Connection failed: {str(e)}. The website may be down or blocking requests."
}
except requests.exceptions.HTTPError as e:
return {
'success': False,
'error': f"HTTP Error {e.response.status_code}: {e.response.reason}"
}
except requests.exceptions.RequestException as e:
return {
'success': False,
'error': f"Request failed: {str(e)}"
}
except Exception as e:
return {
'success': False,
'error': f"Unexpected error while processing webpage: {str(e)}"
}
def analyze_content(self, scraped_data, user_query, api_key):
"""Analyze scraped content using DeepSeek V3"""
if not self.client:
success, message = self.setup_client(api_key)
if not success:
return f"Error: {message}"
if not scraped_data['success']:
return f"Error scraping webpage: {scraped_data['error']}"
# Prepare content for AI analysis
content_text = f"""
WEBPAGE ANALYSIS REQUEST
========================
URL: {scraped_data['url']}
Title: {scraped_data['title']}
Content Length: {scraped_data['content_length']} characters
Tables Found: {len(scraped_data['tables'])}
META DESCRIPTION:
{scraped_data['meta_description']}
MAIN CONTENT:
{scraped_data['text']}
"""
if scraped_data['tables']:
content_text += f"\n\nSTRUCTURED DATA - {len(scraped_data['tables'])} TABLE(S) FOUND:\n"
content_text += "=" * 50 + "\n"
for table in scraped_data['tables']:
content_text += f"\nTABLE {table['id']}:\n"
content_text += f"Headers: {' | '.join(table['headers'])}\n"
content_text += "-" * 50 + "\n"
for i, row in enumerate(table['data'][:10]): # Show first 10 rows
content_text += f"Row {i+1}: {' | '.join(str(cell) for cell in row)}\n"
if len(table['data']) > 10:
content_text += f"... and {len(table['data']) - 10} more rows\n"
content_text += "\n"
try:
completion = self.client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://gradio-web-scraper.com",
"X-Title": "AI Web Scraping Tool",
},
model="deepseek/deepseek-chat-v3-0324:free",
messages=[
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": f"{content_text}\n\nUSER REQUEST:\n{user_query}\n\nPlease analyze the above webpage content and fulfill the user's request. Be thorough and accurate."}
],
temperature=0.1,
max_tokens=4000
)
return completion.choices[0].message.content
except Exception as e:
return f"Error analyzing content with AI: {str(e)}"
def create_interface():
tool = WebScrapingTool()
def process_request(api_key, url, user_query):
if not api_key.strip():
return "β Please enter your OpenRouter API key"
if not url.strip():
return "β Please enter a valid URL"
if not user_query.strip():
return "β Please enter your analysis query"
# Validate URL format
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
# Add progress updates
yield "π Initializing web scraper..."
time.sleep(0.5)
yield "π Fetching webpage content (this may take a moment)..."
# Scrape webpage
scraped_data = tool.scrape_webpage(url)
if not scraped_data['success']:
yield f"β Scraping Failed: {scraped_data['error']}"
return
yield f"β
Successfully scraped webpage!\nπ Title: {scraped_data['title']}\nπ Found {len(scraped_data['tables'])} tables\nπ Content: {scraped_data['content_length']} characters\n\nπ€ Analyzing content with DeepSeek V3..."
# Analyze content
result = tool.analyze_content(scraped_data, user_query, api_key)
yield f"β
Analysis Complete!\n{'='*50}\n\n{result}"
# Create Gradio interface
with gr.Blocks(title="AI Web Scraping Tool", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π€ AI Web Scraping Tool
### Powered by DeepSeek V3 & OpenRouter
Extract and analyze web content using advanced AI. The tool handles timeouts, SSL issues, and provides robust scraping capabilities.
""")
with gr.Row():
with gr.Column(scale=2):
api_key_input = gr.Textbox(
label="π OpenRouter API Key",
placeholder="Enter your OpenRouter API key here...",
type="password",
info="Get your free API key from openrouter.ai"
)
url_input = gr.Textbox(
label="π Website URL",
placeholder="https://example.com or just example.com",
info="Enter the URL you want to scrape and analyze"
)
query_input = gr.Textbox(
label="π Analysis Query",
placeholder="What do you want to extract? (e.g., 'Extract main points and create a summary table')",
lines=4,
info="Describe what information you want to extract from the webpage"
)
with gr.Row():
analyze_btn = gr.Button("π Analyze Website", variant="primary", size="lg")
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
with gr.Column(scale=3):
output = gr.Textbox(
label="π Analysis Results",
lines=25,
max_lines=40,
show_copy_button=True,
interactive=False,
placeholder="Results will appear here after analysis..."
)
# Tips and Examples
with gr.Accordion("π‘ Usage Tips & Examples", open=False):
gr.Markdown("""
### π― Example Analysis Queries:
- **Data Extraction**: *"Extract all numerical data and organize it in a table format"*
- **Content Summary**: *"Summarize the main points in bullet format with key statistics"*
- **Table Processing**: *"Find all tables and convert them to a single consolidated format"*
- **Specific Information**: *"Extract contact information, prices, or product details"*
- **Comparison**: *"Compare different items/options mentioned and create a comparison table"*
### π§ Technical Notes:
- **Multiple Timeouts**: Tool tries 15s, 30s, then 45s timeouts automatically
- **SSL Handling**: Bypasses SSL issues for problematic websites
- **Content Filtering**: Removes ads, popups, and unnecessary elements
- **Table Detection**: Automatically finds and structures tabular data
- **Error Recovery**: Handles connection issues and provides clear error messages
### π Works Well With:
- News websites (BBC, CNN, Reuters)
- Government sites (IMF, WHO, official statistics)
- Wikipedia and educational content
- E-commerce product pages
- Financial data sites (Yahoo Finance, MarketWatch)
- Research papers and academic sites
""")
# Event handlers
analyze_btn.click(
fn=process_request,
inputs=[api_key_input, url_input, query_input],
outputs=output,
show_progress=True
)
clear_btn.click(
fn=lambda: ("", "", "", ""),
outputs=[api_key_input, url_input, query_input, output]
)
return app
if __name__ == "__main__":
# Create and launch the app
app = create_interface()
# Launch with enhanced configuration
app.launch(
share=True
) |