Spaces:
Running
Running
File size: 36,701 Bytes
93fb7cb c01e49c 93fb7cb 81a5137 93fb7cb 81a5137 93fb7cb c01e49c f7478ee c01e49c f7478ee c01e49c 93fb7cb c01e49c 93fb7cb c01e49c f7478ee c01e49c f7478ee c01e49c f7478ee c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb 81a5137 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb 81a5137 93fb7cb c01e49c 93fb7cb 81a5137 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb 81a5137 93fb7cb 81a5137 93fb7cb 81a5137 93fb7cb 81a5137 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb 81a5137 c01e49c 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb 81a5137 93fb7cb c01e49c 81a5137 c01e49c 81a5137 f7478ee 81a5137 982639c 81a5137 982639c 81a5137 982639c 81a5137 982639c 81a5137 c01e49c 93fb7cb 81a5137 93fb7cb 81a5137 93fb7cb c01e49c 93fb7cb c01e49c 93fb7cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
import gradio as gr
import requests
from bs4 import BeautifulSoup
from openai import OpenAI
import json
import re
from urllib.parse import urljoin, urlparse
import time
import urllib3
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import ssl
# Disable SSL warnings
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
class WebScrapingTool:
def __init__(self):
self.client = None
self.scraped_data = None # Store scraped data for fact-checking
self.analysis_result = None # Store analysis result for fact-checking
self.system_prompt = """You are a specialized web data extraction assistant. Your core purpose is to browse and analyze the content of web pages based on user instructions, and return structured or unstructured information from the provided URL. Your capabilities include:
1. Navigating and reading web page content from a given URL.
2. Extracting textual content including headings, paragraphs, lists, and metadata.
3. Identifying and extracting HTML tables and presenting them in a clean, structured format.
4. Creating new, custom tables based on user queries by processing, reorganizing, or filtering the content found on the source page.
You must always follow these guidelines:
- Accurately extract and summarize both structured (tables, lists) and unstructured (paragraphs, articles) content.
- Clearly separate different types of data (e.g., summaries, tables, bullet points).
- When extracting textual content:
- Maintain original meaning, structure, and tone.
- Capture all relevant sections based on user instructions (e.g., only the "Overview" or "Methodology" sections).
- When extracting tables:
- Preserve headers and align row data correctly.
- Identify and differentiate multiple tables, if present.
- When creating custom tables:
- Include only the relevant columns as per the user request.
- Sort, filter, and reorganize data accordingly.
- Use clear and consistent headers.
You must not hallucinate or infer data not present on the page. If content is missing, unclear, or restricted, say so explicitly.
Always respond based on the actual content from the provided link. If the page fails to load or cannot be accessed, inform the user immediately.
Your role is to act as an intelligent browser and data interpreter β able to read and reshape any web content to meet user needs."""
self.factcheck_prompt = """You are an expert fact-checker and critical analysis assistant. Your role is to thoroughly examine AI-generated analysis results against the original source material to verify accuracy, identify potential errors, and assess the reliability of the analysis.
Your fact-checking responsibilities include:
1. **Accuracy Verification**: Compare each claim, statistic, and piece of information in the analysis against the original source content.
2. **Completeness Assessment**: Determine if important information was missed or if the analysis covers all relevant aspects.
3. **Error Detection**: Identify factual errors, misinterpretations, or misrepresentations of the source material.
4. **Context Verification**: Ensure that information is presented in proper context and not taken out of context.
5. **Consistency Check**: Verify that the analysis is internally consistent and doesn't contain contradictions.
For your fact-checking analysis, provide:
- **ACCURACY SCORE**: Rate the overall accuracy on a scale of 1-10 (10 being perfectly accurate)
- **KEY FINDINGS**: List what was correctly analyzed
- **ERRORS IDENTIFIED**: Point out any inaccuracies, misrepresentations, or missing information
- **VERIFICATION STATUS**: For each major claim, indicate whether it's VERIFIED, PARTIALLY VERIFIED, or CANNOT VERIFY
- **RECOMMENDATIONS**: Suggest improvements or corrections needed
Be thorough, objective, and provide specific examples when pointing out discrepancies. If the analysis is accurate, acknowledge its quality. If there are issues, be clear about what needs correction."""
def setup_client(self, api_key):
"""Initialize OpenAI client with OpenRouter"""
try:
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
return True, "API client initialized successfully!"
except Exception as e:
return False, f"Failed to initialize API client: {str(e)}"
def create_session(self):
"""Create a robust session with retry strategy and proper headers"""
session = requests.Session()
# Define retry strategy with fixed parameter name
retry_strategy = Retry(
total=3,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "OPTIONS"], # Fixed: changed from method_whitelist
backoff_factor=1
)
# Mount adapter with retry strategy
adapter = HTTPAdapter(max_retries=retry_strategy)
session.mount("http://", adapter)
session.mount("https://", adapter)
# Set comprehensive headers to mimic real browser
session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
'Sec-Fetch-Dest': 'document',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'Cache-Control': 'max-age=0'
})
return session
def scrape_webpage(self, url):
"""Scrape webpage content with enhanced error handling and timeouts"""
try:
session = self.create_session()
# Multiple timeout attempts with increasing duration
timeout_attempts = [15, 30, 45]
response = None
for timeout in timeout_attempts:
try:
print(f"Attempting to fetch {url} with {timeout}s timeout...")
response = session.get(
url,
timeout=timeout,
verify=False, # Disable SSL verification for problematic sites
allow_redirects=True,
stream=False
)
response.raise_for_status()
break
except requests.exceptions.Timeout:
if timeout == timeout_attempts[-1]: # Last attempt
return {
'success': False,
'error': f"Connection timed out after multiple attempts. The website may be slow or blocking automated requests."
}
continue
except requests.exceptions.SSLError:
# Try with different SSL context
try:
response = session.get(
url,
timeout=timeout,
verify=False,
allow_redirects=True
)
response.raise_for_status()
break
except:
continue
except requests.exceptions.RequestException as e:
if timeout == timeout_attempts[-1]: # Last attempt
return {
'success': False,
'error': f"Request failed: {str(e)}"
}
continue
# Check if we got a response
if response is None:
return {
'success': False,
'error': "Failed to establish connection after multiple attempts"
}
# Check content type
content_type = response.headers.get('content-type', '').lower()
if 'text/html' not in content_type and 'text/plain' not in content_type:
return {
'success': False,
'error': f"Invalid content type: {content_type}. Expected HTML content."
}
# Parse HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Remove unwanted elements
for element in soup(["script", "style", "nav", "footer", "header", "aside", "noscript", "iframe"]):
element.decompose()
# Remove elements with common ad/tracking classes
ad_classes = ['ad', 'advertisement', 'banner', 'popup', 'modal', 'cookie', 'newsletter']
for class_name in ad_classes:
for element in soup.find_all(class_=re.compile(class_name, re.I)):
element.decompose()
# Extract text content
text_content = soup.get_text(separator=' ', strip=True)
# Clean up text - remove extra whitespace
text_content = re.sub(r'\s+', ' ', text_content)
text_content = text_content.strip()
# Extract tables with improved structure
tables = []
for i, table in enumerate(soup.find_all('table')):
table_data = []
headers = []
# Try to find headers in various ways
header_row = table.find('thead')
if header_row:
header_row = header_row.find('tr')
else:
header_row = table.find('tr')
if header_row:
headers = []
for th in header_row.find_all(['th', 'td']):
header_text = th.get_text(strip=True)
headers.append(header_text if header_text else f"Column_{len(headers)+1}")
# Extract all rows (skip header if it was already processed)
rows = table.find_all('tr')
start_idx = 1 if header_row and header_row in rows else 0
for row in rows[start_idx:]:
cells = row.find_all(['td', 'th'])
if cells:
row_data = []
for cell in cells:
cell_text = cell.get_text(strip=True)
row_data.append(cell_text)
if row_data and any(cell.strip() for cell in row_data): # Skip empty rows
table_data.append(row_data)
if table_data:
# Ensure headers match data columns
max_cols = max(len(row) for row in table_data) if table_data else 0
if len(headers) < max_cols:
headers.extend([f"Column_{i+1}" for i in range(len(headers), max_cols)])
elif len(headers) > max_cols:
headers = headers[:max_cols]
tables.append({
'id': i + 1,
'headers': headers,
'data': table_data[:50] # Limit rows to prevent overwhelming
})
# Extract metadata
title = soup.title.string.strip() if soup.title and soup.title.string else "No title found"
# Extract meta description
meta_desc = ""
desc_tag = soup.find('meta', attrs={'name': 'description'})
if desc_tag and desc_tag.get('content'):
meta_desc = desc_tag['content'].strip()
return {
'success': True,
'text': text_content[:20000], # Limit text length
'tables': tables,
'title': title,
'meta_description': meta_desc,
'url': url,
'content_length': len(text_content)
}
except requests.exceptions.ConnectionError as e:
return {
'success': False,
'error': f"Connection failed: {str(e)}. The website may be down or blocking requests."
}
except requests.exceptions.HTTPError as e:
return {
'success': False,
'error': f"HTTP Error {e.response.status_code}: {e.response.reason}"
}
except requests.exceptions.RequestException as e:
return {
'success': False,
'error': f"Request failed: {str(e)}"
}
except Exception as e:
return {
'success': False,
'error': f"Unexpected error while processing webpage: {str(e)}"
}
def analyze_content(self, scraped_data, user_query, api_key):
"""Analyze scraped content using DeepSeek V3"""
if not self.client:
success, message = self.setup_client(api_key)
if not success:
return f"Error: {message}"
if not scraped_data['success']:
return f"Error scraping webpage: {scraped_data['error']}"
# Store scraped data for fact-checking
self.scraped_data = scraped_data
# Prepare content for AI analysis
content_text = f"""
WEBPAGE ANALYSIS REQUEST
========================
URL: {scraped_data['url']}
Title: {scraped_data['title']}
Content Length: {scraped_data['content_length']} characters
Tables Found: {len(scraped_data['tables'])}
META DESCRIPTION:
{scraped_data['meta_description']}
MAIN CONTENT:
{scraped_data['text']}
"""
if scraped_data['tables']:
content_text += f"\n\nSTRUCTURED DATA - {len(scraped_data['tables'])} TABLE(S) FOUND:\n"
content_text += "=" * 50 + "\n"
for table in scraped_data['tables']:
content_text += f"\nTABLE {table['id']}:\n"
content_text += f"Headers: {' | '.join(table['headers'])}\n"
content_text += "-" * 50 + "\n"
for i, row in enumerate(table['data'][:10]): # Show first 10 rows
content_text += f"Row {i+1}: {' | '.join(str(cell) for cell in row)}\n"
if len(table['data']) > 10:
content_text += f"... and {len(table['data']) - 10} more rows\n"
content_text += "\n"
try:
completion = self.client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://gradio-web-scraper.com",
"X-Title": "AI Web Scraping Tool",
},
model="deepseek/deepseek-chat-v3-0324:free",
messages=[
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": f"{content_text}\n\nUSER REQUEST:\n{user_query}\n\nPlease analyze the above webpage content and fulfill the user's request. Be thorough and accurate."}
],
temperature=0.1,
max_tokens=4000
)
result = completion.choices[0].message.content
# Store analysis result for fact-checking
self.analysis_result = result
return result
except Exception as e:
return f"Error analyzing content with AI: {str(e)}"
def fact_check_analysis(self, api_key):
"""Fact-check the analysis results using DeepSeek R1"""
if not self.client:
success, message = self.setup_client(api_key)
if not success:
return f"Error: {message}"
if not self.scraped_data or not self.analysis_result:
return "β No analysis results to fact-check. Please run an analysis first."
# Prepare content for fact-checking
factcheck_content = f"""
FACT-CHECKING TASK
==================
ORIGINAL SOURCE MATERIAL:
-------------------------
URL: {self.scraped_data['url']}
Title: {self.scraped_data['title']}
Content Length: {self.scraped_data['content_length']} characters
SOURCE TEXT:
{self.scraped_data['text']}
"""
if self.scraped_data['tables']:
factcheck_content += f"\n\nSOURCE TABLES ({len(self.scraped_data['tables'])} found):\n"
factcheck_content += "=" * 50 + "\n"
for table in self.scraped_data['tables']:
factcheck_content += f"\nTABLE {table['id']}:\n"
factcheck_content += f"Headers: {' | '.join(table['headers'])}\n"
factcheck_content += "-" * 50 + "\n"
for i, row in enumerate(table['data'][:15]): # Show more rows for fact-checking
factcheck_content += f"Row {i+1}: {' | '.join(str(cell) for cell in row)}\n"
if len(table['data']) > 15:
factcheck_content += f"... and {len(table['data']) - 15} more rows\n"
factcheck_content += "\n"
factcheck_content += f"""
AI ANALYSIS TO VERIFY:
======================
{self.analysis_result}
FACT-CHECKING INSTRUCTIONS:
===========================
Please thoroughly fact-check the AI analysis above against the original source material. Verify every claim, statistic, and piece of information. Provide a comprehensive fact-checking report."""
try:
completion = self.client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://gradio-web-scraper.com",
"X-Title": "AI Web Scraping Tool - Fact Checker",
},
extra_body={},
model="deepseek/deepseek-r1:free",
messages=[
{"role": "system", "content": self.factcheck_prompt},
{"role": "user", "content": factcheck_content}
]
)
return completion.choices[0].message.content
except Exception as e:
return f"Error fact-checking with DeepSeek R1: {str(e)}"
def create_interface():
tool = WebScrapingTool()
def process_request(api_key, url, user_query):
if not api_key.strip():
return "β Please enter your OpenRouter API key"
if not url.strip():
return "β Please enter a valid URL"
if not user_query.strip():
return "β Please enter your analysis query"
# Validate URL format
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
# Add progress updates
yield "π Initializing web scraper..."
time.sleep(0.5)
yield "π Fetching webpage content (this may take a moment)..."
# Scrape webpage
scraped_data = tool.scrape_webpage(url)
if not scraped_data['success']:
yield f"β Scraping Failed: {scraped_data['error']}"
return
yield f"β
Successfully scraped webpage!\nπ Title: {scraped_data['title']}\nπ Found {len(scraped_data['tables'])} tables\nπ Content: {scraped_data['content_length']} characters\n\nπ€ Analyzing content with DeepSeek V3..."
# Analyze content
result = tool.analyze_content(scraped_data, user_query, api_key)
yield f"β
Analysis Complete!\n{'='*50}\n\n{result}"
def fact_check_request(api_key):
if not api_key.strip():
return "β Please enter your OpenRouter API key"
yield "π Starting fact-check with DeepSeek R1..."
time.sleep(0.5)
yield "π§ Analyzing accuracy and verifying claims..."
# Perform fact-checking
factcheck_result = tool.fact_check_analysis(api_key)
yield f"β
Fact-Check Complete!\n{'='*50}\n\n{factcheck_result}"
# Create Gradio interface
with gr.Blocks(title="AI Web Scraping Tool with Fact-Checking", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π€ AI Web Scraping Tool with Fact-Checking
### Powered by DeepSeek V3 & DeepSeek R1 via OpenRouter
Extract and analyze web content using advanced AI, then fact-check the results for accuracy and reliability.
""")
with gr.Row():
with gr.Column(scale=2):
api_key_input = gr.Textbox(
label="π OpenRouter API Key",
placeholder="Enter your OpenRouter API key here...",
type="password",
info="Get your free API key from openrouter.ai"
)
url_input = gr.Textbox(
label="π Website URL",
placeholder="https://example.com or just example.com",
info="Enter the URL you want to scrape and analyze"
)
query_input = gr.Textbox(
label="π Analysis Query",
placeholder="What do you want to extract? (e.g., 'Extract main points and create a summary table')",
lines=4,
info="Describe what information you want to extract from the webpage"
)
with gr.Row():
analyze_btn = gr.Button("π Analyze Website", variant="primary", size="lg")
factcheck_btn = gr.Button("π Fact-Check Results", variant="secondary", size="lg")
with gr.Row():
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
with gr.Column(scale=3):
output = gr.Textbox(
label="π Analysis Results",
lines=25,
max_lines=40,
show_copy_button=True,
interactive=False,
placeholder="Results will appear here after analysis..."
)
factcheck_output = gr.Textbox(
label="π Fact-Check Report",
lines=20,
max_lines=40,
show_copy_button=True,
interactive=False,
placeholder="Fact-check results will appear here after clicking 'Fact-Check Results'..."
)
# Tips and Examples
with gr.Accordion("π‘ Usage Tips & Fact-Checking Guide", open=False):
gr.Markdown("""
## π **How to Use the Fact-Checking Feature:**
1. **First**: Enter your API key, URL, and analysis query
2. **Second**: Click "π Analyze Website" to get initial results
3. **Third**: Click "π Fact-Check Results" to verify accuracy with DeepSeek R1
## π― **What the Fact-Checker Does:**
### **Accuracy Verification**
- Compares every claim in the analysis against the original source
- Identifies factual errors and misrepresentations
- Verifies numerical data and statistics
### **Completeness Assessment**
- Checks if important information was missed
- Evaluates coverage of all relevant aspects
- Identifies gaps in the analysis
### **Context Verification**
- Ensures information isn't taken out of context
- Verifies proper interpretation of source material
- Checks for misleading presentations
### **Quality Scoring**
- Provides accuracy scores (1-10 scale)
- Lists verified vs. unverified claims
- Offers specific recommendations for improvement
## π§ͺ **Best Practices for Fact-Checking:**
### **Ideal Test Cases:**
```
URL: https://en.wikipedia.org/wiki/List_of_countries_by_population
Query: Create a table showing the top 10 most populous countries with their exact population figures
```
*Perfect for fact-checking numerical accuracy*
```
URL: https://www.who.int/news-room/fact-sheets
Query: Extract key health statistics and create a summary of global health metrics
```
*Great for verifying official statistics*
```
URL: https://finance.yahoo.com/quote/AAPL
Query: Extract Apple's current stock price, market cap, and financial metrics
```
*Excellent for checking real-time financial data accuracy*
## π― **Example Analysis Queries for Fact-Checking:**
### **Data-Heavy Content**
- *"Extract all numerical data and organize it in a table format"*
- *"Create a comparison table of different countries' GDP figures"*
- *"List the top 10 items with their exact values from the source"*
### **Statistical Information**
- *"Summarize key statistics with specific numbers and percentages"*
- *"Extract survey results and present the exact figures"*
- *"Create a timeline with specific dates and events"*
### **Complex Analysis**
- *"Compare different viewpoints and cite specific quotes"*
- *"Extract cause-and-effect relationships mentioned in the article"*
- *"Summarize research findings with methodology details"*
## π **What Gets Fact-Checked:**
β
**Verified Items:**
- Exact quotes and citations
- Numerical data and statistics
- Dates, names, and factual claims
- Table data accuracy
- Mathematical calculations
β οΈ **Flagged Issues:**
- Misquoted information
- Incorrect numbers or percentages
- Missing context or nuance
- Overgeneralized statements
- Unsupported conclusions
## π¨ **Red Flags the Fact-Checker Catches:**
- **Hallucinated Data**: Information not present in the source
- **Misattributed Quotes**: Quotes assigned to wrong sources
- **Mathematical Errors**: Incorrect calculations or summaries
- **Context Loss**: Information presented without proper context
- **Incomplete Extraction**: Missing important details from tables
## π‘ **Tips for Better Fact-Checking:**
1. **Use Specific Queries**: More specific requests = better fact-checking
2. **Test with Known Data**: Start with sites where you know the content
3. **Check Complex Tables**: Tables are great for testing accuracy
4. **Verify Names & Dates**: These are common error points
5. **Cross-Reference**: Compare with multiple sources when possible
## π¬ **Advanced Fact-Checking Tests:**
### **Financial Data Test**
```
URL: https://finance.yahoo.com/quote/MSFT
Query: Create a detailed financial summary table with exact figures for Microsoft stock
Expected: Fact-checker should verify all numbers match the source exactly
```
### **Statistical Data Test**
```
URL: https://www.census.gov/quickfacts/fact/table/US
Query: Extract US population demographics with specific percentages
Expected: Fact-checker should confirm all demographic percentages are accurate
```
### **Historical Data Test**
```
URL: https://en.wikipedia.org/wiki/List_of_Presidents_of_the_United_States
Query: Create a table of the last 10 US presidents with their exact terms of office
Expected: Fact-checker should verify all dates and names are correct
```
## π§ͺ **Test Scenarios**
### **1. News & Media Sites**
```
URL: https://www.bbc.com/news
Query: Extract the top 5 news headlines with their summaries and create a table with columns: Headline, Category, Summary
```
```
URL: https://edition.cnn.com
Query: Find all breaking news items and organize them by topic/region in a structured format
```
### **2. Financial Data Sites**
```
URL: https://finance.yahoo.com/quote/AAPL
Query: Extract Apple stock information including current price, daily change, market cap, and any financial metrics into a summary table
```
```
URL: https://www.marketwatch.com/investing/stock/tsla
Query: Create a table with Tesla's key financial metrics: price, change, volume, market cap, P/E ratio
```
### **3. E-commerce & Product Pages**
```
URL: https://www.amazon.com/dp/B08N5WRWNW
Query: Extract product details including name, price, ratings, key features, and specifications in a structured format
```
```
URL: https://www.ebay.com/itm/123456789
Query: Extract item details, price, seller information, and shipping details into a comparison-ready table
```
### **4. Educational & Reference Sites**
```
URL: https://en.wikipedia.org/wiki/Artificial_intelligence
Query: Extract the main definition, history timeline, and applications of AI. Create separate sections for each topic.
```
```
URL: https://en.wikipedia.org/wiki/List_of_countries_by_population
Query: Extract the population data table and create a new table showing top 10 most populous countries with their population and growth rate
```
### **5. Government & Official Statistics**
```
URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
Query: Extract the latest COVID-19 statistics and create a summary table with key global figures
```
```
URL: https://www.census.gov/quickfacts
Query: Extract key demographic statistics for the United States and organize them into categories: Population, Economy, Geography
```
### **6. Technology & Business News**
```
URL: https://techcrunch.com
Query: Find the latest startup funding news and create a table with: Company Name, Funding Amount, Investors, Industry
```
```
URL: https://www.reuters.com/technology
Query: Extract top technology news and summarize each story in 2-3 sentences with key points
```
### **7. Scientific & Research Sites**
```
URL: https://www.nature.com/articles
Query: Extract recent scientific article titles, authors, and abstracts. Create a summary table organized by research field
```
```
URL: https://pubmed.ncbi.nlm.nih.gov/trending
Query: Find trending medical research topics and create a list with brief descriptions of each study's findings
```
### **8. Sports & Entertainment**
```
URL: https://www.espn.com/nba/standings
Query: Extract NBA team standings and create a table with: Team, Wins, Losses, Win Percentage, Conference Position
```
```
URL: https://www.imdb.com/chart/top
Query: Extract the top 10 movies from IMDb's top 250 list with ratings, year, and brief description
```
### **9. Weather & Environmental Data**
```
URL: https://weather.com/weather/today
Query: Extract current weather conditions and forecast data. Create a summary with temperature, conditions, and weekly outlook
```
### **10. Real Estate & Property**
```
URL: https://www.zillow.com/homes/for_sale
Query: Extract property listings with prices, locations, square footage, and key features into a comparison table
```
## π― **Quick Test Samples (Copy & Paste Ready)**
### **Simple Test:**
```
URL: https://httpbin.org/html
Query: Extract all text content and identify the page structure
```
### **Table Extraction Test:**
```
URL: https://www.w3schools.com/html/html_tables.asp
Query: Find all HTML tables on this page and convert them to a structured format with proper headers
```
### **Complex Analysis Test:**
```
URL: https://www.sec.gov/edgar/browse/?CIK=320193
Query: Extract Apple Inc.'s recent SEC filings and create a table with: Filing Date, Document Type, Description
```
### **International Site Test:**
```
URL: https://www.bbc.co.uk/weather
Query: Extract UK weather information and create a regional breakdown of current conditions
```
## π― **Interpreting Fact-Check Results:**
### **Accuracy Scores:**
- **9-10**: Highly accurate, minimal issues
- **7-8**: Generally accurate with minor corrections needed
- **5-6**: Moderate accuracy, several issues to address
- **3-4**: Low accuracy, significant problems found
- **1-2**: Poor accuracy, major fact-checking failures
### **Verification Status:**
- **β
VERIFIED**: Claim matches source exactly
- **β οΈ PARTIALLY VERIFIED**: Claim is mostly correct but lacks nuance
- **β CANNOT VERIFY**: Claim not supported by source material
- **π¨ CONTRADICTED**: Claim directly contradicts source
Remember: The fact-checker is designed to be thorough and critical. Even high-quality analyses may receive suggestions for improvement!
""")
# Event handlers
analyze_btn.click(
fn=process_request,
inputs=[api_key_input, url_input, query_input],
outputs=output,
show_progress=True
)
factcheck_btn.click(
fn=fact_check_request,
inputs=[api_key_input],
outputs=factcheck_output,
show_progress=True
)
clear_btn.click(
fn=lambda: ("", "", "", "", ""),
outputs=[api_key_input, url_input, query_input, output, factcheck_output]
)
return app
if __name__ == "__main__":
# Create and launch the app
app = create_interface()
# Launch with enhanced configuration
app.launch(
share=True
) |