Spaces:
Running
Running
File size: 26,640 Bytes
533b217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import gradio as gr import requests from bs4 import BeautifulSoup from openai import OpenAI import json import re from urllib.parse import urljoin, urlparse import time import urllib3 from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry import ssl # Disable SSL warnings urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) class WebScrapingTool: def __init__(self): self.client = None self.system_prompt = """You are a specialized web data extraction assistant. Your core purpose is to browse and analyze the content of web pages based on user instructions, and return structured or unstructured information from the provided URL. Your capabilities include: 1. Navigating and reading web page content from a given URL. 2. Extracting textual content including headings, paragraphs, lists, and metadata. 3. Identifying and extracting HTML tables and presenting them in a clean, structured format. 4. Creating new, custom tables based on user queries by processing, reorganizing, or filtering the content found on the source page. You must always follow these guidelines: - Accurately extract and summarize both structured (tables, lists) and unstructured (paragraphs, articles) content. - Clearly separate different types of data (e.g., summaries, tables, bullet points). - When extracting textual content: - Maintain original meaning, structure, and tone. - Capture all relevant sections based on user instructions (e.g., only the "Overview" or "Methodology" sections). - When extracting tables: - Preserve headers and align row data correctly. - Identify and differentiate multiple tables, if present. - When creating custom tables: - Include only the relevant columns as per the user request. - Sort, filter, and reorganize data accordingly. - Use clear and consistent headers. You must not hallucinate or infer data not present on the page. If content is missing, unclear, or restricted, say so explicitly. Always respond based on the actual content from the provided link. If the page fails to load or cannot be accessed, inform the user immediately. Your role is to act as an intelligent browser and data interpreter β able to read and reshape any web content to meet user needs.""" def setup_client(self, api_key): """Initialize OpenAI client with OpenRouter""" try: self.client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=api_key, ) return True, "API client initialized successfully!" except Exception as e: return False, f"Failed to initialize API client: {str(e)}" def create_session(self): """Create a robust session with retry strategy and proper headers""" session = requests.Session() # Define retry strategy with fixed parameter name retry_strategy = Retry( total=3, status_forcelist=[429, 500, 502, 503, 504], allowed_methods=["HEAD", "GET", "OPTIONS"], # Fixed: changed from method_whitelist backoff_factor=1 ) # Mount adapter with retry strategy adapter = HTTPAdapter(max_retries=retry_strategy) session.mount("http://", adapter) session.mount("https://", adapter) # Set comprehensive headers to mimic real browser session.headers.update({ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7', 'Accept-Language': 'en-US,en;q=0.9', 'Accept-Encoding': 'gzip, deflate, br', 'DNT': '1', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'Sec-Fetch-Dest': 'document', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-Site': 'none', 'Sec-Fetch-User': '?1', 'Cache-Control': 'max-age=0' }) return session def scrape_webpage(self, url): """Scrape webpage content with enhanced error handling and timeouts""" try: session = self.create_session() # Multiple timeout attempts with increasing duration timeout_attempts = [15, 30, 45] response = None for timeout in timeout_attempts: try: print(f"Attempting to fetch {url} with {timeout}s timeout...") response = session.get( url, timeout=timeout, verify=False, # Disable SSL verification for problematic sites allow_redirects=True, stream=False ) response.raise_for_status() break except requests.exceptions.Timeout: if timeout == timeout_attempts[-1]: # Last attempt return { 'success': False, 'error': f"Connection timed out after multiple attempts. The website may be slow or blocking automated requests." } continue except requests.exceptions.SSLError: # Try with different SSL context try: response = session.get( url, timeout=timeout, verify=False, allow_redirects=True ) response.raise_for_status() break except: continue except requests.exceptions.RequestException as e: if timeout == timeout_attempts[-1]: # Last attempt return { 'success': False, 'error': f"Request failed: {str(e)}" } continue # Check if we got a response if response is None: return { 'success': False, 'error': "Failed to establish connection after multiple attempts" } # Check content type content_type = response.headers.get('content-type', '').lower() if 'text/html' not in content_type and 'text/plain' not in content_type: return { 'success': False, 'error': f"Invalid content type: {content_type}. Expected HTML content." } # Parse HTML content soup = BeautifulSoup(response.content, 'html.parser') # Remove unwanted elements for element in soup(["script", "style", "nav", "footer", "header", "aside", "noscript", "iframe"]): element.decompose() # Remove elements with common ad/tracking classes ad_classes = ['ad', 'advertisement', 'banner', 'popup', 'modal', 'cookie', 'newsletter'] for class_name in ad_classes: for element in soup.find_all(class_=re.compile(class_name, re.I)): element.decompose() # Extract text content text_content = soup.get_text(separator=' ', strip=True) # Clean up text - remove extra whitespace text_content = re.sub(r'\s+', ' ', text_content) text_content = text_content.strip() # Extract tables with improved structure tables = [] for i, table in enumerate(soup.find_all('table')): table_data = [] headers = [] # Try to find headers in various ways header_row = table.find('thead') if header_row: header_row = header_row.find('tr') else: header_row = table.find('tr') if header_row: headers = [] for th in header_row.find_all(['th', 'td']): header_text = th.get_text(strip=True) headers.append(header_text if header_text else f"Column_{len(headers)+1}") # Extract all rows (skip header if it was already processed) rows = table.find_all('tr') start_idx = 1 if header_row and header_row in rows else 0 for row in rows[start_idx:]: cells = row.find_all(['td', 'th']) if cells: row_data = [] for cell in cells: cell_text = cell.get_text(strip=True) row_data.append(cell_text) if row_data and any(cell.strip() for cell in row_data): # Skip empty rows table_data.append(row_data) if table_data: # Ensure headers match data columns max_cols = max(len(row) for row in table_data) if table_data else 0 if len(headers) < max_cols: headers.extend([f"Column_{i+1}" for i in range(len(headers), max_cols)]) elif len(headers) > max_cols: headers = headers[:max_cols] tables.append({ 'id': i + 1, 'headers': headers, 'data': table_data[:50] # Limit rows to prevent overwhelming }) # Extract metadata title = soup.title.string.strip() if soup.title and soup.title.string else "No title found" # Extract meta description meta_desc = "" desc_tag = soup.find('meta', attrs={'name': 'description'}) if desc_tag and desc_tag.get('content'): meta_desc = desc_tag['content'].strip() return { 'success': True, 'text': text_content[:20000], # Limit text length 'tables': tables, 'title': title, 'meta_description': meta_desc, 'url': url, 'content_length': len(text_content) } except requests.exceptions.ConnectionError as e: return { 'success': False, 'error': f"Connection failed: {str(e)}. The website may be down or blocking requests." } except requests.exceptions.HTTPError as e: return { 'success': False, 'error': f"HTTP Error {e.response.status_code}: {e.response.reason}" } except requests.exceptions.RequestException as e: return { 'success': False, 'error': f"Request failed: {str(e)}" } except Exception as e: return { 'success': False, 'error': f"Unexpected error while processing webpage: {str(e)}" } def analyze_content(self, scraped_data, user_query, api_key): """Analyze scraped content using DeepSeek V3""" if not self.client: success, message = self.setup_client(api_key) if not success: return f"Error: {message}" if not scraped_data['success']: return f"Error scraping webpage: {scraped_data['error']}" # Prepare content for AI analysis content_text = f""" WEBPAGE ANALYSIS REQUEST ======================== URL: {scraped_data['url']} Title: {scraped_data['title']} Content Length: {scraped_data['content_length']} characters Tables Found: {len(scraped_data['tables'])} META DESCRIPTION: {scraped_data['meta_description']} MAIN CONTENT: {scraped_data['text']} """ if scraped_data['tables']: content_text += f"\n\nSTRUCTURED DATA - {len(scraped_data['tables'])} TABLE(S) FOUND:\n" content_text += "=" * 50 + "\n" for table in scraped_data['tables']: content_text += f"\nTABLE {table['id']}:\n" content_text += f"Headers: {' | '.join(table['headers'])}\n" content_text += "-" * 50 + "\n" for i, row in enumerate(table['data'][:10]): # Show first 10 rows content_text += f"Row {i+1}: {' | '.join(str(cell) for cell in row)}\n" if len(table['data']) > 10: content_text += f"... and {len(table['data']) - 10} more rows\n" content_text += "\n" try: completion = self.client.chat.completions.create( extra_headers={ "HTTP-Referer": "https://gradio-web-scraper.com", "X-Title": "AI Web Scraping Tool", }, model="deepseek/deepseek-chat-v3-0324:free", messages=[ {"role": "system", "content": self.system_prompt}, {"role": "user", "content": f"{content_text}\n\nUSER REQUEST:\n{user_query}\n\nPlease analyze the above webpage content and fulfill the user's request. Be thorough and accurate."} ], temperature=0.1, max_tokens=4000 ) return completion.choices[0].message.content except Exception as e: return f"Error analyzing content with AI: {str(e)}" def create_interface(): tool = WebScrapingTool() def process_request(api_key, url, user_query): if not api_key.strip(): return "β Please enter your OpenRouter API key" if not url.strip(): return "β Please enter a valid URL" if not user_query.strip(): return "β Please enter your analysis query" # Validate URL format if not url.startswith(('http://', 'https://')): url = 'https://' + url # Add progress updates yield "π Initializing web scraper..." time.sleep(0.5) yield "π Fetching webpage content (this may take a moment)..." # Scrape webpage scraped_data = tool.scrape_webpage(url) if not scraped_data['success']: yield f"β Scraping Failed: {scraped_data['error']}" return yield f"β Successfully scraped webpage!\nπ Title: {scraped_data['title']}\nπ Found {len(scraped_data['tables'])} tables\nπ Content: {scraped_data['content_length']} characters\n\nπ€ Analyzing content with DeepSeek V3..." # Analyze content result = tool.analyze_content(scraped_data, user_query, api_key) yield f"β Analysis Complete!\n{'='*50}\n\n{result}" # Create Gradio interface with gr.Blocks(title="AI Web Scraping Tool", theme=gr.themes.Soft()) as app: gr.Markdown(""" # π€ AI Web Scraping Tool ### Powered by DeepSeek V3 & OpenRouter Extract and analyze web content using advanced AI. The tool handles timeouts, SSL issues, and provides robust scraping capabilities. """) with gr.Row(): with gr.Column(scale=2): api_key_input = gr.Textbox( label="π OpenRouter API Key", placeholder="Enter your OpenRouter API key here...", type="password", info="Get your free API key from openrouter.ai" ) url_input = gr.Textbox( label="π Website URL", placeholder="https://example.com or just example.com", info="Enter the URL you want to scrape and analyze" ) query_input = gr.Textbox( label="π Analysis Query", placeholder="What do you want to extract? (e.g., 'Extract main points and create a summary table')", lines=4, info="Describe what information you want to extract from the webpage" ) with gr.Row(): analyze_btn = gr.Button("π Analyze Website", variant="primary", size="lg") clear_btn = gr.Button("ποΈ Clear All", variant="secondary") with gr.Column(scale=3): output = gr.Textbox( label="π Analysis Results", lines=25, max_lines=40, show_copy_button=True, interactive=False, placeholder="Results will appear here after analysis..." ) # Tips and Examples with gr.Accordion("π‘ Usage Tips & Examples", open=False): gr.Markdown(""" ### π― Example Analysis Queries: - **Data Extraction**: *"Extract all numerical data and organize it in a table format"* - **Content Summary**: *"Summarize the main points in bullet format with key statistics"* - **Table Processing**: *"Find all tables and convert them to a single consolidated format"* - **Specific Information**: *"Extract contact information, prices, or product details"* - **Comparison**: *"Compare different items/options mentioned and create a comparison table"* ### π§ Technical Notes: - **Multiple Timeouts**: Tool tries 15s, 30s, then 45s timeouts automatically - **SSL Handling**: Bypasses SSL issues for problematic websites - **Content Filtering**: Removes ads, popups, and unnecessary elements - **Table Detection**: Automatically finds and structures tabular data - **Error Recovery**: Handles connection issues and provides clear error messages ### π Works Well With: - News websites (BBC, CNN, Reuters) - Government sites (IMF, WHO, official statistics) - Wikipedia and educational content - E-commerce product pages - Financial data sites (Yahoo Finance, MarketWatch) - Research papers and academic sites ## π§ͺ **Test Scenarios** ### **1. News & Media Sites** ``` URL: https://www.bbc.com/news Query: Extract the top 5 news headlines with their summaries and create a table with columns: Headline, Category, Summary ``` ``` URL: https://edition.cnn.com Query: Find all breaking news items and organize them by topic/region in a structured format ``` ### **2. Financial Data Sites** ``` URL: https://finance.yahoo.com/quote/AAPL Query: Extract Apple stock information including current price, daily change, market cap, and any financial metrics into a summary table ``` ``` URL: https://www.marketwatch.com/investing/stock/tsla Query: Create a table with Tesla's key financial metrics: price, change, volume, market cap, P/E ratio ``` ### **3. E-commerce & Product Pages** ``` URL: https://www.amazon.com/dp/B08N5WRWNW Query: Extract product details including name, price, ratings, key features, and specifications in a structured format ``` ``` URL: https://www.ebay.com/itm/123456789 Query: Extract item details, price, seller information, and shipping details into a comparison-ready table ``` ### **4. Educational & Reference Sites** ``` URL: https://en.wikipedia.org/wiki/Artificial_intelligence Query: Extract the main definition, history timeline, and applications of AI. Create separate sections for each topic. ``` ``` URL: https://en.wikipedia.org/wiki/List_of_countries_by_population Query: Extract the population data table and create a new table showing top 10 most populous countries with their population and growth rate ``` ### **5. Government & Official Statistics** ``` URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports Query: Extract the latest COVID-19 statistics and create a summary table with key global figures ``` ``` URL: https://www.census.gov/quickfacts Query: Extract key demographic statistics for the United States and organize them into categories: Population, Economy, Geography ``` ### **6. Technology & Business News** ``` URL: https://techcrunch.com Query: Find the latest startup funding news and create a table with: Company Name, Funding Amount, Investors, Industry ``` ``` URL: https://www.reuters.com/technology Query: Extract top technology news and summarize each story in 2-3 sentences with key points ``` ### **7. Scientific & Research Sites** ``` URL: https://www.nature.com/articles Query: Extract recent scientific article titles, authors, and abstracts. Create a summary table organized by research field ``` ``` URL: https://pubmed.ncbi.nlm.nih.gov/trending Query: Find trending medical research topics and create a list with brief descriptions of each study's findings ``` ### **8. Sports & Entertainment** ``` URL: https://www.espn.com/nba/standings Query: Extract NBA team standings and create a table with: Team, Wins, Losses, Win Percentage, Conference Position ``` ``` URL: https://www.imdb.com/chart/top Query: Extract the top 10 movies from IMDb's top 250 list with ratings, year, and brief description ``` ### **9. Weather & Environmental Data** ``` URL: https://weather.com/weather/today Query: Extract current weather conditions and forecast data. Create a summary with temperature, conditions, and weekly outlook ``` ### **10. Real Estate & Property** ``` URL: https://www.zillow.com/homes/for_sale Query: Extract property listings with prices, locations, square footage, and key features into a comparison table ``` ## π― **Quick Test Samples (Copy & Paste Ready)** ### **Simple Test:** ``` URL: https://httpbin.org/html Query: Extract all text content and identify the page structure ``` ### **Table Extraction Test:** ``` URL: https://www.w3schools.com/html/html_tables.asp Query: Find all HTML tables on this page and convert them to a structured format with proper headers ``` ### **Complex Analysis Test:** ``` URL: https://www.sec.gov/edgar/browse/?CIK=320193 Query: Extract Apple Inc.'s recent SEC filings and create a table with: Filing Date, Document Type, Description ``` ### **International Site Test:** ``` URL: https://www.bbc.co.uk/weather Query: Extract UK weather information and create a regional breakdown of current conditions ``` ## π **Testing Tips:** 1. **Start Simple**: Begin with basic sites like Wikipedia or news sites 2. **Test Error Handling**: Try invalid URLs to see error messages 3. **Check Timeouts**: Use slow-loading sites to test timeout handling 4. **Verify Tables**: Test sites with different table structures 5. **Content Variety**: Try different content types (news, data, products) ## π¨ **Sites That May Have Issues:** - Social media sites (require login) - Sites with heavy JavaScript (may have limited content) - Sites with aggressive bot protection - Password-protected pages ## β **Reliable Test Sites:** - Wikipedia (excellent for tables and structured content) - BBC News (good for text extraction) - Government sites (.gov domains) - W3Schools (great for HTML table testing) - HttpBin (perfect for testing basic functionality) Start with the simpler tests and gradually move to more complex scenarios to fully evaluate your tool's capabilities! """) # Event handlers analyze_btn.click( fn=process_request, inputs=[api_key_input, url_input, query_input], outputs=output, show_progress=True ) clear_btn.click( fn=lambda: ("", "", "", ""), outputs=[api_key_input, url_input, query_input, output] ) return app if __name__ == "__main__": # Create and launch the app app = create_interface() # Launch with enhanced configuration app.launch( share=True ) |