import gradio as gr import os import re import time import base64 from openai import OpenAI from together import Together from PIL import Image import io from datetime import datetime import tempfile import weasyprint from pathlib import Path # Function to convert markdown to HTML with styling def markdown_to_html(markdown_text, problem_text="", include_problem=True): """Convert markdown to styled HTML""" # Convert markdown to HTML html_content = markdown.markdown(markdown_text, extensions=['tables', 'fenced_code']) # Get current timestamp timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Create styled HTML document styled_html = f""" Math Solution - Advanced Math Tutor

📚 Advanced Math Tutor

Step-by-Step Mathematical Solution
{f'''

📝 Problem Statement

{problem_text}

''' if include_problem and problem_text.strip() else ''}

🔍 Solution

{html_content}
Generated on: {timestamp}
""" return styled_html # Function to save HTML to file def save_html_to_file(html_content, filename_prefix="math_solution"): """Save HTML content to a temporary file and return the file path""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"{filename_prefix}_{timestamp}.html" # Create a temporary file temp_dir = tempfile.gettempdir() file_path = os.path.join(temp_dir, filename) with open(file_path, 'w', encoding='utf-8') as f: f.write(html_content) return file_path # Function to convert HTML to PDF def html_to_pdf(html_content, filename_prefix="math_solution"): """Convert HTML content to PDF and return the file path""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"{filename_prefix}_{timestamp}.pdf" # Create a temporary file for PDF temp_dir = tempfile.gettempdir() pdf_path = os.path.join(temp_dir, filename) try: # Convert HTML to PDF using WeasyPrint weasyprint.HTML(string=html_content).write_pdf(pdf_path) return pdf_path except Exception as e: print(f"Error converting to PDF: {str(e)}") return None # Enhanced function to generate math solution using OpenRouter with HTML output def generate_math_solution_openrouter(api_key, problem_text, history=None): if not api_key.strip(): return "Please enter your OpenRouter API key.", None, None, history if not problem_text.strip(): return "Please enter a math problem.", None, None, history try: client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=api_key, ) messages = [ {"role": "system", "content": """You are an expert math tutor who explains concepts clearly and thoroughly. Analyze the given math problem and provide a detailed step-by-step solution. For each step: 1. Show the mathematical operation 2. Explain why this step is necessary 3. Connect it to relevant mathematical concepts Format your response using markdown with clear section headers. Begin with an "Initial Analysis" section, follow with numbered steps, and conclude with a "Final Answer" section. Use proper markdown formatting including: - Headers (##, ###) - **Bold text** for important points - `Code blocks` for mathematical expressions - Lists and numbered steps - Tables if needed for comparisons or data"""}, ] # Add conversation history if it exists if history: for exchange in history: messages.append({"role": "user", "content": exchange[0]}) if len(exchange) > 1 and exchange[1]: # Check if there's a response messages.append({"role": "assistant", "content": exchange[1]}) # Add the current problem messages.append({"role": "user", "content": f"Solve this math problem step-by-step: {problem_text}"}) # Create the completion completion = client.chat.completions.create( model="microsoft/phi-4-reasoning-plus:free", messages=messages, extra_headers={ "HTTP-Referer": "https://advancedmathtutor.edu", "X-Title": "Advanced Math Tutor", } ) markdown_solution = completion.choices[0].message.content # Convert to HTML html_solution = markdown_to_html(markdown_solution, problem_text) # Save HTML file html_file_path = save_html_to_file(html_solution, "openrouter_solution") # Convert to PDF pdf_file_path = html_to_pdf(html_solution, "openrouter_solution") # Update history if history is None: history = [] history.append((problem_text, markdown_solution)) return html_solution, html_file_path, pdf_file_path, history except Exception as e: error_message = f"Error: {str(e)}" return error_message, None, None, history # Enhanced function to generate math solution using Together AI with HTML output def generate_math_solution_together(api_key, problem_text, image_path=None, history=None): if not api_key.strip(): return "Please enter your Together AI API key.", None, None, history if not problem_text.strip() and image_path is None: return "Please enter a math problem or upload an image of a math problem.", None, None, history try: client = Together(api_key=api_key) # Create the base message structure messages = [ { "role": "system", "content": """You are an expert math tutor who explains concepts clearly and thoroughly. Analyze the given math problem and provide a detailed step-by-step solution. For each step: 1. Show the mathematical operation 2. Explain why this step is necessary 3. Connect it to relevant mathematical concepts Format your response using markdown with clear section headers. Begin with an "Initial Analysis" section, follow with numbered steps, and conclude with a "Final Answer" section. Use proper markdown formatting including: - Headers (##, ###) - **Bold text** for important points - `Code blocks` for mathematical expressions - Lists and numbered steps - Tables if needed for comparisons or data""" } ] # Add conversation history if it exists if history: for exchange in history: messages.append({"role": "user", "content": exchange[0]}) if len(exchange) > 1 and exchange[1]: # Check if there's a response messages.append({"role": "assistant", "content": exchange[1]}) # Prepare the user message content user_message_content = [] # Add text content if provided if problem_text.strip(): user_message_content.append({ "type": "text", "text": f"Solve this math problem: {problem_text}" }) else: user_message_content.append({ "type": "text", "text": "Solve this math problem from the image:" }) # Add image if provided if image_path: # Convert image to base64 base64_image = image_to_base64(image_path) if base64_image: user_message_content.append({ "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } }) # Add the user message with content messages.append({ "role": "user", "content": user_message_content }) # Create the completion response = client.chat.completions.create( model="meta-llama/Llama-Vision-Free", messages=messages, stream=False ) markdown_solution = response.choices[0].message.content # Convert to HTML problem_display = problem_text if problem_text.strip() else "Image-based problem" html_solution = markdown_to_html(markdown_solution, problem_display) # Save HTML file html_file_path = save_html_to_file(html_solution, "together_solution") # Convert to PDF pdf_file_path = html_to_pdf(html_solution, "together_solution") # Update history - for simplicity, just store the text problem if history is None: history = [] history.append((problem_display, markdown_solution)) return html_solution, html_file_path, pdf_file_path, history except Exception as e: error_message = f"Error: {str(e)}" return error_message, None, None, history # Function to convert image to base64 def image_to_base64(image_path): if image_path is None: return None try: with open(image_path, "rb") as img_file: return base64.b64encode(img_file.read()).decode("utf-8") except Exception as e: print(f"Error converting image to base64: {str(e)}") return None # Define the Gradio interface def create_demo(): with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo: gr.Markdown("# 📚 Advanced Math Tutor") gr.Markdown(""" This application provides step-by-step solutions to math problems using advanced AI models. Solutions are generated in **HTML format** with download and print-to-PDF capabilities. Choose between OpenRouter's Phi-4-reasoning-plus for text-based problems or Together AI's Llama-Vision for problems with images. """) # Main tabs with gr.Tabs(): # Text-based problem solver (OpenRouter) with gr.TabItem("Text Problem Solver (OpenRouter)"): with gr.Row(): with gr.Column(scale=1): openrouter_api_key = gr.Textbox( label="OpenRouter API Key", placeholder="Enter your OpenRouter API key (starts with sk-or-)", type="password" ) text_problem_input = gr.Textbox( label="Math Problem", placeholder="Enter your math problem here...", lines=5 ) example_problems = gr.Examples( examples=[ ["Solve the quadratic equation: 3x² + 5x - 2 = 0"], ["Find the derivative of f(x) = x³ln(x)"], ["Calculate the area of a circle with radius 5 cm"], ["Find all values of x that satisfy the equation: log₂(x-1) + log₂(x+3) = 5"] ], inputs=[text_problem_input], label="Example Problems" ) with gr.Row(): openrouter_submit_btn = gr.Button("Solve Problem", variant="primary") openrouter_clear_btn = gr.Button("Clear") with gr.Column(scale=2): openrouter_solution_output = gr.HTML(label="Solution (HTML Format)") with gr.Row(): openrouter_html_download = gr.File( label="📄 Download HTML Solution", visible=False ) openrouter_pdf_download = gr.File( label="📄 Download PDF Solution", visible=False ) # Store conversation history (invisible to user) openrouter_conversation_history = gr.State(value=None) # Button actions def handle_openrouter_submit(api_key, problem_text, history): html_solution, html_file, pdf_file, updated_history = generate_math_solution_openrouter( api_key, problem_text, history ) # Return outputs including file updates return ( html_solution, updated_history, gr.update(value=html_file, visible=html_file is not None), gr.update(value=pdf_file, visible=pdf_file is not None) ) openrouter_submit_btn.click( fn=handle_openrouter_submit, inputs=[openrouter_api_key, text_problem_input, openrouter_conversation_history], outputs=[ openrouter_solution_output, openrouter_conversation_history, openrouter_html_download, openrouter_pdf_download ] ) def clear_openrouter(): return ( "", None, gr.update(value=None, visible=False), gr.update(value=None, visible=False) ) openrouter_clear_btn.click( fn=clear_openrouter, inputs=[], outputs=[ openrouter_solution_output, openrouter_conversation_history, openrouter_html_download, openrouter_pdf_download ] ) # Image-based problem solver (Together AI) with gr.TabItem("Image Problem Solver (Together AI)"): with gr.Row(): with gr.Column(scale=1): together_api_key = gr.Textbox( label="Together AI API Key", placeholder="Enter your Together AI API key", type="password" ) together_problem_input = gr.Textbox( label="Problem Description (Optional)", placeholder="Enter additional context for the image problem...", lines=3 ) together_image_input = gr.Image( label="Upload Math Problem Image", type="filepath" ) with gr.Row(): together_submit_btn = gr.Button("Solve Problem", variant="primary") together_clear_btn = gr.Button("Clear") with gr.Column(scale=2): together_solution_output = gr.HTML(label="Solution (HTML Format)") with gr.Row(): together_html_download = gr.File( label="📄 Download HTML Solution", visible=False ) together_pdf_download = gr.File( label="📄 Download PDF Solution", visible=False ) # Store conversation history (invisible to user) together_conversation_history = gr.State(value=None) # Button actions def handle_together_submit(api_key, problem_text, image_path, history): html_solution, html_file, pdf_file, updated_history = generate_math_solution_together( api_key, problem_text, image_path, history ) # Return outputs including file updates return ( html_solution, updated_history, gr.update(value=html_file, visible=html_file is not None), gr.update(value=pdf_file, visible=pdf_file is not None) ) together_submit_btn.click( fn=handle_together_submit, inputs=[together_api_key, together_problem_input, together_image_input, together_conversation_history], outputs=[ together_solution_output, together_conversation_history, together_html_download, together_pdf_download ] ) def clear_together(): return ( "", None, gr.update(value=None, visible=False), gr.update(value=None, visible=False) ) together_clear_btn.click( fn=clear_together, inputs=[], outputs=[ together_solution_output, together_conversation_history, together_html_download, together_pdf_download ] ) # Help tab with gr.TabItem("Help"): gr.Markdown(""" ## How to Use the Advanced Math Tutor ### New Features 🎉 - **HTML-formatted solutions**: All responses are now generated in beautiful HTML format - **Download HTML**: Download the complete solution as an HTML file - **Download PDF**: Convert and download solutions as PDF files - **Print functionality**: Use the "Print to PDF" button in the HTML output to print directly ### Getting Started #### For Text-Based Problems (OpenRouter) 1. You'll need an API key from OpenRouter 2. Sign up at [OpenRouter](https://openrouter.ai/) to get your API key 3. Enter your API key in the designated field in the "Text Problem Solver" tab #### For Image-Based Problems (Together AI) 1. You'll need an API key from Together AI 2. Sign up at [Together AI](https://www.together.ai/) to get your API key 3. Enter your API key in the designated field in the "Image Problem Solver" tab 4. Upload an image of your math problem 5. Optionally add text to provide additional context ### Solving Math Problems - For text problems: Type or paste your math problem in the input field - For image problems: Upload a clear image of the math problem - Click "Solve Problem" to get a detailed step-by-step solution in HTML format - Use the download buttons to save HTML or PDF versions - Click "Print to PDF" within the solution to print directly from your browser ### HTML Output Features - **Professional styling**: Clean, readable format with proper typography - **Mathematical expressions**: Highlighted math expressions and code blocks - **Step-by-step sections**: Clearly organized solution steps - **Print-friendly**: Optimized for printing and PDF conversion - **Timestamps**: Each solution includes generation timestamp ### Tips for Best Results - Be specific in your problem description - Include all necessary information - For complex equations, use clear notation - For algebraic expressions, use ^ for exponents (e.g., x^2 for x²) - Use parentheses to group terms clearly - For images, ensure the math problem is clearly visible and well-lit ### Types of Problems You Can Solve - Algebra (equations, inequalities, systems of equations) - Calculus (derivatives, integrals, limits) - Trigonometry - Geometry - Statistics and Probability - Number Theory - And many more! ### Required Dependencies To run this application, you'll need to install: ```bash pip install gradio openai together pillow markdown weasyprint ``` """) # Footer gr.Markdown(""" --- ### About This enhanced application uses Microsoft's Phi-4-reasoning-plus model via OpenRouter for text-based problems and Llama-Vision-Free via Together AI for image-based problems. **New Features:** - HTML-formatted responses with professional styling - Download solutions as HTML files - Convert and download solutions as PDF files - Print-to-PDF functionality - Enhanced formatting with mathematical expressions highlighting Your API keys are required but not stored permanently. """) return demo # Launch the app if __name__ == "__main__": demo = create_demo() demo.launch()