Spaces:
Sleeping
Sleeping
File size: 33,100 Bytes
43180ce 90b5a30 43180ce d78eaa6 43180ce 0fc2023 43180ce 0fc2023 43180ce 90b5a30 58b3683 3c0499c 58b3683 90b5a30 0fc2023 90b5a30 58b3683 d78eaa6 58b3683 d78eaa6 90b5a30 d78eaa6 90b5a30 d78eaa6 58b3683 90b5a30 0fc2023 90b5a30 0fc2023 90b5a30 0fc2023 58b3683 0fc2023 58b3683 0fc2023 90b5a30 0fc2023 90b5a30 58b3683 90b5a30 0fc2023 90b5a30 0fc2023 90b5a30 43180ce 0fc2023 43180ce 90b5a30 43180ce 0fc2023 43180ce 0fc2023 43180ce 0fc2023 43180ce 3c0499c 43180ce 0fc2023 43180ce 90b5a30 43180ce 0fc2023 43180ce 90b5a30 43180ce 0fc2023 43180ce 0fc2023 43180ce 3c0499c 90b5a30 43180ce 0fc2023 43180ce 90b5a30 43180ce 90b5a30 43180ce 0fc2023 43180ce 90b5a30 43180ce 0fc2023 43180ce 3c0499c 0fc2023 43180ce 3c0499c 0fc2023 43180ce 0fc2023 43180ce 90b5a30 43180ce 90b5a30 43180ce 0fc2023 43180ce 0fc2023 43180ce 3c0499c 90b5a30 0fc2023 43180ce 0fc2023 90b5a30 0fc2023 90b5a30 0fc2023 90b5a30 0a1766d 0fc2023 3c0499c d78eaa6 43180ce 0fc2023 43180ce 0fc2023 43180ce 3c0499c 43180ce 90b5a30 43180ce 58b3683 90b5a30 43180ce 58b3683 90b5a30 43180ce 0fc2023 43180ce 0fc2023 43180ce 0fc2023 43180ce 58b3683 90b5a30 43180ce 58b3683 90b5a30 43180ce 0fc2023 90b5a30 43180ce 90b5a30 58b3683 90b5a30 58b3683 90b5a30 58b3683 90b5a30 43180ce 58b3683 90b5a30 43180ce 58b3683 90b5a30 43180ce 0fc2023 43180ce 0fc2023 43180ce 0fc2023 43180ce 0fc2023 43180ce 90b5a30 43180ce 58b3683 90b5a30 43180ce 90b5a30 58b3683 90b5a30 58b3683 90b5a30 58b3683 90b5a30 43180ce 90b5a30 43180ce 90b5a30 58b3683 90b5a30 58b3683 90b5a30 43180ce 5d2c0e5 43180ce 5d2c0e5 90b5a30 58b3683 43180ce 0fc2023 43180ce 58b3683 43180ce 0fc2023 58b3683 0fc2023 5d2c0e5 90b5a30 5d2c0e5 0fc2023 90b5a30 0fc2023 58b3683 90b5a30 5d2c0e5 43180ce 0fa3797 43180ce 58b3683 43180ce 0fc2023 58b3683 0fc2023 58b3683 0fc2023 58b3683 0fc2023 58b3683 0fc2023 43180ce 0fc2023 43180ce 5d2c0e5 43180ce 58b3683 43180ce 58b3683 43180ce 0fc2023 43180ce 58b3683 43180ce 58b3683 43180ce 5d2c0e5 58b3683 0fc2023 43180ce 0fc2023 43180ce 0fc2023 58b3683 0fc2023 58b3683 0fc2023 58b3683 43180ce 0fc2023 5d2c0e5 58b3683 0fc2023 43180ce 90b5a30 43180ce 0fc2023 43180ce 90b5a30 43180ce 0fc2023 43180ce 90b5a30 43180ce 90b5a30 0fc2023 43180ce 58b3683 0fc2023 58b3683 90b5a30 0fc2023 58b3683 90b5a30 0fc2023 58b3683 90b5a30 0fc2023 58b3683 90b5a30 58b3683 43180ce 58b3683 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
import gradio as gr
from groq import Groq
import json
import time
from typing import Dict, List, Tuple, Optional
import threading
from datetime import datetime
import html
import re
class ReasoningOrchestra:
def __init__(self):
self.client = None
self.is_api_key_set = False
def set_api_key(self, api_key: str) -> str:
"""Set the Groq API key and test connection"""
if not api_key.strip():
return "β Please enter a valid API key"
try:
self.client = Groq(api_key=api_key.strip())
# Test the connection with a simple request
test_completion = self.client.chat.completions.create(
model="qwen/qwen3-32b",
messages=[{"role": "user", "content": "Hello"}],
max_completion_tokens=10
)
self.is_api_key_set = True
return "β
API key validated successfully! You can now use the Reasoning Orchestra."
except Exception as e:
self.is_api_key_set = False
return f"β API key validation failed: {str(e)}"
def format_text_to_html(self, text: str) -> str:
"""Convert text to HTML with proper formatting and consistent font size"""
if not text or text.strip() == "" or text == "No response generated":
return "<p style='color: #666; font-style: italic; font-size: 16px;'>No content was generated. This might be due to API limitations or model availability issues.</p>"
# Escape HTML characters first
text = html.escape(text)
# Convert markdown-style formatting to HTML with consistent font sizes
# Headers
text = re.sub(r'^### (.*$)', r'<h3 style="font-size: 18px;">\1</h3>', text, flags=re.MULTILINE)
text = re.sub(r'^## (.*$)', r'<h2 style="font-size: 20px;">\1</h2>', text, flags=re.MULTILINE)
text = re.sub(r'^# (.*$)', r'<h1 style="font-size: 22px;">\1</h1>', text, flags=re.MULTILINE)
# Bold text
text = re.sub(r'\*\*(.*?)\*\*', r'<strong>\1</strong>', text)
# Italic text
text = re.sub(r'\*(.*?)\*', r'<em>\1</em>', text)
# Code blocks
text = re.sub(r'```(.*?)```', r'<pre style="font-size: 15px; background: #f5f5f5; padding: 10px; border-radius: 5px;"><code>\1</code></pre>', text, flags=re.DOTALL)
text = re.sub(r'`(.*?)`', r'<code style="font-size: 15px; background: #f5f5f5; padding: 2px 4px; border-radius: 3px;">\1</code>', text)
# Lists
lines = text.split('\n')
in_list = False
formatted_lines = []
for line in lines:
stripped = line.strip()
if stripped.startswith('- ') or stripped.startswith('* '):
if not in_list:
formatted_lines.append('<ul style="font-size: 16px;">')
in_list = True
formatted_lines.append(f'<li>{stripped[2:]}</li>')
elif stripped.startswith(('1. ', '2. ', '3. ', '4. ', '5. ', '6. ', '7. ', '8. ', '9. ')):
if not in_list:
formatted_lines.append('<ol style="font-size: 16px;">')
in_list = True
formatted_lines.append(f'<li>{stripped[3:]}</li>')
else:
if in_list:
formatted_lines.append('</ul>' if any('<li>' in line for line in formatted_lines[-5:]) else '</ol>')
in_list = False
if stripped:
formatted_lines.append(f'<p style="font-size: 16px; margin: 8px 0;">{line}</p>')
else:
formatted_lines.append('<br>')
if in_list:
formatted_lines.append('</ul>')
return '\n'.join(formatted_lines)
def deep_thinker_analyze(self, problem: str, context: str = "") -> Dict:
"""DeepSeek R1 - The Deep Thinker"""
if not self.is_api_key_set:
return {"error": "API key not set"}
prompt = f"""You are the Deep Thinker in a collaborative reasoning system. Your role is to provide thorough, methodical analysis with extensive step-by-step reasoning.
Problem: {problem}
{f"Additional Context: {context}" if context else ""}
Please provide a comprehensive analysis with deep reasoning. Think through all implications, consider multiple angles, and provide detailed step-by-step logic. Be thorough and methodical in your approach."""
try:
completion = self.client.chat.completions.create(
model="deepseek-r1-distill-llama-70b",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
max_completion_tokens=8192,
top_p=0.95,
reasoning_format="raw"
)
response_content = completion.choices[0].message.content
if not response_content or response_content.strip() == "":
response_content = "The model did not generate a response. This could be due to content filtering, model limitations, or API issues."
return {
"model": "DeepSeek R1 (Deep Thinker)",
"role": "π The Philosopher & Deep Analyzer",
"reasoning": response_content,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A"
}
except Exception as e:
return {"error": f"Deep Thinker error: {str(e)}"}
def quick_strategist_analyze(self, problem: str, context: str = "") -> Dict:
"""Qwen3 32B - The Quick Strategist"""
if not self.is_api_key_set:
return {"error": "API key not set"}
prompt = f"""You are the Quick Strategist in a collaborative reasoning system. Your role is to provide fast, efficient strategic analysis with clear action plans.
Problem: {problem}
{f"Additional Context: {context}" if context else ""}
Please provide a strategic analysis with:
1. Key insights and patterns
2. Practical solutions
3. Implementation priorities
4. Risk assessment
5. Clear next steps
Be decisive and solution-focused. Provide concrete, actionable recommendations."""
try:
completion = self.client.chat.completions.create(
model="qwen/qwen3-32b",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
top_p=0.95,
max_completion_tokens=8192
)
response_content = completion.choices[0].message.content
if not response_content or response_content.strip() == "":
response_content = "The model did not generate a response. This could be due to content filtering, model limitations, or API issues."
return {
"model": "Qwen3 32B (Quick Strategist)",
"role": "π The Strategic Decision Maker",
"reasoning": response_content,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A"
}
except Exception as e:
return {"error": f"Quick Strategist error: {str(e)}"}
def detail_detective_analyze(self, problem: str, context: str = "") -> Dict:
"""QwQ 32B - The Detail Detective"""
if not self.is_api_key_set:
return {"error": "API key not set"}
prompt = f"""You are the Detail Detective in a collaborative reasoning system. Your role is to provide meticulous investigation and comprehensive fact-checking.
Problem: {problem}
{f"Additional Context: {context}" if context else ""}
Please conduct a thorough investigation including:
1. Detailed analysis of all aspects
2. Potential edge cases and considerations
3. Verification of assumptions
4. Historical context or precedents
5. Comprehensive pros and cons
6. Hidden connections or implications
Be extremely thorough and leave no stone unturned. Provide detailed evidence and reasoning for your conclusions."""
try:
completion = self.client.chat.completions.create(
model="qwen-qwq-32b",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
top_p=0.9,
max_completion_tokens=8192
)
response_content = completion.choices[0].message.content
if not response_content or response_content.strip() == "":
fallback_prompt = f"Analyze this problem in detail: {problem}"
fallback_completion = self.client.chat.completions.create(
model="qwen-qwq-32b",
messages=[{"role": "user", "content": fallback_prompt}],
temperature=0.5,
max_completion_tokens=8192
)
response_content = fallback_completion.choices[0].message.content
if not response_content or response_content.strip() == "":
response_content = "The QwQ model encountered an issue generating content. This could be due to the complexity of the prompt, content filtering, or temporary model availability issues. The model may work better with simpler, more direct questions."
return {
"model": "QwQ 32B (Detail Detective)",
"role": "π The Meticulous Investigator",
"reasoning": response_content,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A"
}
except Exception as e:
error_msg = f"Detail Detective error: {str(e)}"
if "model" in str(e).lower() or "not found" in str(e).lower():
error_msg += "\n\nNote: The QwQ model may not be available in your region or may have usage restrictions. You can still use the other models in the orchestra."
return {"error": error_msg}
def synthesize_orchestra(self, deep_result: Dict, strategic_result: Dict, detective_result: Dict, original_problem: str) -> str:
"""Synthesize all three perspectives into a final orchestrated solution using Llama 3.3 70B"""
if not self.is_api_key_set:
return "API key not set"
def extract_reasoning(result: Dict, model_name: str) -> str:
if result.get('error'):
return f"**{model_name} encountered an issue:** {result['error']}"
reasoning = result.get('reasoning', '')
if not reasoning or reasoning.strip() == "" or reasoning == "No response generated":
return f"**{model_name}** did not provide analysis (this may be due to model limitations or API issues)."
return reasoning
deep_reasoning = extract_reasoning(deep_result, "Deep Thinker")
strategic_reasoning = extract_reasoning(strategic_result, "Quick Strategist")
detective_reasoning = extract_reasoning(detective_result, "Detail Detective")
synthesis_prompt = f"""You are the Orchestra Conductor using Llama 3.3 70B Versatile model. You have received analytical perspectives from three different AI reasoning specialists on the same problem. Your job is to synthesize these into a comprehensive, unified solution.
ORIGINAL PROBLEM: {original_problem}
DEEP THINKER ANALYSIS (π DeepSeek R1):
{deep_reasoning}
STRATEGIC ANALYSIS (π Qwen3 32B):
{strategic_reasoning}
DETECTIVE INVESTIGATION (π QwQ 32B):
{detective_reasoning}
As the Orchestra Conductor, please create a unified synthesis that:
1. Combines the best insights from all available analyses
2. Addresses any gaps where models didn't provide input
3. Resolves any contradictions between the analyses
4. Provides a comprehensive final recommendation
5. Highlights where the different reasoning styles complement each other
6. Gives a clear, actionable conclusion
If some models didn't provide analysis, work with what's available and note any limitations.
Format your response as a well-structured final solution that leverages all available reasoning approaches. Use clear sections and bullet points where appropriate for maximum clarity."""
try:
completion = self.client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[{"role": "user", "content": synthesis_prompt}],
temperature=0.7,
max_completion_tokens=8192,
top_p=0.9
)
synthesis_content = completion.choices[0].message.content
if not synthesis_content or synthesis_content.strip() == "":
return "The synthesis could not be generated. This may be due to API limitations or the complexity of combining the different analyses."
return synthesis_content
except Exception as e:
return f"Synthesis error: {str(e)}"
# Initialize the orchestra
orchestra = ReasoningOrchestra()
def validate_api_key(api_key: str) -> str:
"""Validate the API key and return status"""
return orchestra.set_api_key(api_key)
def run_single_model(problem: str, model_choice: str, context: str = "") -> str:
"""Run a single model analysis"""
if not orchestra.is_api_key_set:
return """<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6; font-size: 16px;">
<h3 style="font-size: 18px;">β API Key Required</h3>
<p style="font-size: 16px;">Please set your Groq API key first in the API Configuration section above.</p>
</div>"""
if not problem.strip():
return """<div style="color: orange; padding: 20px; border: 2px solid orange; border-radius: 10px; background-color: #fff3e6; font-size: 16px;">
<h3 style="font-size: 18px;">β οΈ Problem Required</h3>
<p style="font-size: 16px;">Please enter a problem to analyze.</p>
</div>"""
start_time = time.time()
if model_choice == "Deep Thinker (DeepSeek R1)":
result = orchestra.deep_thinker_analyze(problem, context)
elif model_choice == "Quick Strategist (Qwen3 32B)":
result = orchestra.quick_strategist_analyze(problem, context)
elif model_choice == "Detail Detective (QwQ 32B)":
result = orchestra.detail_detective_analyze(problem, context)
else:
return """<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6; font-size: 16px;">
<h3 style="font-size: 18px;">β Invalid Model Selection</h3>
<p style="font-size: 16px;">Please select a valid model from the dropdown.</p>
</div>"""
elapsed_time = time.time() - start_time
if "error" in result:
return f"""<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6; font-size: 16px;">
<h3 style="font-size: 18px;">β Error</h3>
<p style="font-size: 16px;">{result['error']}</p>
</div>"""
# Format the response as HTML
reasoning_html = orchestra.format_text_to_html(result['reasoning'])
formatted_output = f"""
<div style="border: 2px solid #28a745; border-radius: 15px; padding: 25px; margin: 15px 0; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);">
<div style="display: flex; align-items: center; margin-bottom: 20px; padding-bottom: 15px; border-bottom: 2px solid #28a745;">
<h2 style="margin: 0; color: #28a745; font-size: 22px;">{result['role']}</h2>
</div>
<div style="background-color: white; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<div style="display: flex; gap: 20px; font-size: 16px; color: #666;">
<span><strong>Model:</strong> {result['model']}</span>
<span><strong>Analysis Time:</strong> {elapsed_time:.2f} seconds</span>
<span><strong>Timestamp:</strong> {result['timestamp']}</span>
<span><strong>Tokens:</strong> {result['tokens_used']}</span>
</div>
</div>
<div style="background-color: white; padding: 20px; border-radius: 10px; line-height: 1.6; font-size: 16px;">
{reasoning_html}
</div>
</div>
"""
return formatted_output
def run_full_orchestra(problem: str, context: str = "") -> Tuple[str, str, str, str]:
"""Run the full collaborative reasoning orchestra"""
if not orchestra.is_api_key_set:
error_msg = """<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6; font-size: 16px;">
<h3 style="font-size: 18px;">β API Key Required</h3>
<p style="font-size: 16px;">Please set your Groq API key first in the API Configuration section above.</p>
</div>"""
return error_msg, error_msg, error_msg, error_msg
if not problem.strip():
error_msg = """<div style="color: orange; padding: 20px; border: 2px solid orange; border-radius: 10px; background-color: #fff3e6; font-size: 16px;">
<h3 style="font-size: 18px;">β οΈ Problem Required</h3>
<p style="font-size: 16px;">Please enter a problem to analyze.</p>
</div>"""
return error_msg, error_msg, error_msg, error_msg
# Phase 1: Deep Thinker
deep_result = orchestra.deep_thinker_analyze(problem, context)
# Phase 2: Quick Strategist
strategic_result = orchestra.quick_strategist_analyze(problem, context)
# Phase 3: Detail Detective
detective_result = orchestra.detail_detective_analyze(problem, context)
# Phase 4: Synthesis using Llama 3.3 70B
synthesis = orchestra.synthesize_orchestra(deep_result, strategic_result, detective_result, problem)
def format_result_html(result: Dict, color: str, icon: str) -> str:
if "error" in result:
return f"""<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6; font-size: 16px;">
<h3 style="font-size: 18px;">β Model Error</h3>
<p style="font-size: 16px;">{result['error']}</p>
<p style="font-size: 14px; color: #666; margin-top: 10px;"><em>This model may have restrictions or temporary availability issues. The other models can still provide analysis.</em></p>
</div>"""
reasoning_html = orchestra.format_text_to_html(result['reasoning'])
return f"""
<div style="border: 2px solid {color}; border-radius: 15px; padding: 25px; margin: 15px 0; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);">
<div style="display: flex; align-items: center; margin-bottom: 20px; padding-bottom: 15px; border-bottom: 2px solid {color};">
<span style="font-size: 24px; margin-right: 10px;">{icon}</span>
<h2 style="margin: 0; color: {color}; font-size: 22px;">{result['model']}</h2>
</div>
<div style="background-color: white; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<div style="display: flex; gap: 20px; font-size: 16px; color: #666;">
<span><strong>Timestamp:</strong> {result['timestamp']}</span>
<span><strong>Tokens:</strong> {result['tokens_used']}</span>
</div>
</div>
<div style="background-color: white; padding: 20px; border-radius: 10px; line-height: 1.6; font-size: 16px;">
{reasoning_html}
</div>
</div>
"""
deep_output = format_result_html(deep_result, "#6f42c1", "π")
strategic_output = format_result_html(strategic_result, "#fd7e14", "π")
detective_output = format_result_html(detective_result, "#20c997", "π")
synthesis_html = orchestra.format_text_to_html(synthesis)
synthesis_output = f"""
<div style="border: 2px solid #dc3545; border-radius: 15px; padding: 25px; margin: 15px 0; background: linear-gradient(135deg, #fff5f5 0%, #fee);">
<div style="display: flex; align-items: center; margin-bottom: 20px; padding-bottom: 15px; border-bottom: 2px solid #dc3545;">
<span style="font-size: 24px; margin-right: 10px;">πΌ</span>
<h2 style="margin: 0; color: #dc3545; font-size: 22px;">Orchestra Conductor - Final Synthesis (Llama 3.3 70B Versatile)</h2>
</div>
<div style="background-color: white; padding: 20px; border-radius: 10px; line-height: 1.6; font-size: 16px;">
{synthesis_html}
</div>
</div>
"""
return deep_output, strategic_output, detective_output, synthesis_output
# Custom CSS for consistent width and styling
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
font-size: 16px !important;
}
.api-key-section {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
.model-section {
border: 2px solid #e1e5e9;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
.orchestra-header {
text-align: center;
background: linear-gradient(45deg, #f093fb 0%, #f5576c 100%);
padding: 20px;
border-radius: 15px;
margin-bottom: 20px;
font-size: 16px;
}
.status-box {
background-color: #f8f9fa;
border-left: 4px solid #28a745;
padding: 15px;
margin: 10px 0;
border-radius: 5px;
font-size: 16px;
}
/* Consistent width for all tabs */
.tab {
width: 100% !important;
max-width: 1200px !important;
}
/* Custom styling for HTML outputs with fixed width */
.html-content {
width: 100% !important;
max-width: 1200px !important;
max-height: 600px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 8px;
padding: 10px;
background-color: #fafafa;
font-size: 16px !important;
}
/* Ensure all text has consistent font size */
p, li, span, div, textarea, input, select, button {
font-size: 16px !important;
}
h1 {
font-size: 24px !important;
}
h2 {
font-size: 22px !important;
}
h3 {
font-size: 20px !important;
}
h4 {
font-size: 18px !important;
}
/* Make sure code blocks are readable */
pre, code {
font-size: 15px !important;
}
/* Single model analysis layout */
.single-model-container {
display: flex;
flex-direction: column;
gap: 20px;
width: 100% !important;
}
.single-model-inputs {
width: 100% !important;
}
.single-model-output {
width: 100% !important;
margin-top: 20px;
}
/* Full orchestra layout */
.orchestra-outputs {
display: flex;
flex-direction: column;
gap: 20px;
width: 100% !important;
}
"""
# Build the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Ocean(), title="Reasoning Orchestra") as app:
# Header
gr.HTML("""
<div class="orchestra-header">
<h1 style="font-size: 28px;">πΌ The Collaborative Reasoning Orchestra</h1>
<p style="font-size: 18px;"><em>Where AI models collaborate like musicians in an orchestra to solve complex problems</em></p>
<p style="font-size: 18px;"><strong>Now with Llama 3.3 70B Versatile as Orchestra Conductor & Enhanced HTML-Formatted Responses!</strong></p>
</div>
""")
# API Key Section
with gr.Group():
gr.HTML('<div class="api-key-section"><h3 style="color: white; margin-top: 0; font-size: 20px;">π API Configuration</h3></div>')
with gr.Row():
api_key_input = gr.Textbox(
label="Enter your Groq API Key",
type="password",
placeholder="gsk_...",
info="Get your free API key from https://console.groq.com/keys",
elem_id="api_key_input"
)
api_status = gr.Textbox(
label="API Status",
interactive=False,
placeholder="Enter API key to validate...",
elem_id="api_status"
)
validate_btn = gr.Button("π Validate API Key", variant="primary", elem_id="validate_btn")
validate_btn.click(
fn=validate_api_key,
inputs=[api_key_input],
outputs=[api_status]
)
# Main Interface Tabs
with gr.Tabs() as tabs:
# Single Model Tab
with gr.TabItem("π― Single Model Analysis"):
gr.Markdown("### Test individual reasoning models with beautiful HTML output")
with gr.Column(elem_classes=["single-model-container"]):
with gr.Column(elem_classes=["single-model-inputs"]):
single_problem = gr.Textbox(
label="Problem Statement",
placeholder="Enter the problem you want to analyze...",
lines=4,
elem_id="single_problem"
)
single_context = gr.Textbox(
label="Additional Context (Optional)",
placeholder="Any additional context or constraints...",
lines=2,
elem_id="single_context"
)
model_choice = gr.Dropdown(
label="Choose Model",
choices=[
"Deep Thinker (DeepSeek R1)",
"Quick Strategist (Qwen3 32B)",
"Detail Detective (QwQ 32B)"
],
value="Deep Thinker (DeepSeek R1)",
elem_id="model_choice"
)
single_analyze_btn = gr.Button("π Analyze with HTML Output", variant="primary", size="lg", elem_id="single_analyze_btn")
with gr.Column(elem_classes=["single-model-output"]):
single_output = gr.HTML(label="Analysis Result", elem_classes=["html-content"], elem_id="single_output")
single_analyze_btn.click(
fn=run_single_model,
inputs=[single_problem, model_choice, single_context],
outputs=[single_output]
)
# Full Orchestra Tab
with gr.TabItem("πΌ Full Orchestra Collaboration"):
gr.Markdown("### Run all three models collaboratively with Llama 3.3 70B as Orchestra Conductor and stunning HTML-formatted output")
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
orchestra_problem = gr.Textbox(
label="Problem Statement",
placeholder="Enter a complex problem that benefits from multiple reasoning perspectives...",
lines=6,
elem_id="orchestra_problem"
)
orchestra_context = gr.Textbox(
label="Additional Context (Optional)",
placeholder="Background information, constraints, or specific requirements...",
lines=3,
elem_id="orchestra_context"
)
orchestra_analyze_btn = gr.Button("πΌ Start Orchestra Analysis", variant="primary", size="lg", elem_id="orchestra_analyze_btn")
# Orchestra Results
with gr.Column(elem_classes=["orchestra-outputs"]):
deep_output = gr.HTML(label="π Deep Thinker Analysis", elem_classes=["html-content"], elem_id="deep_output")
strategic_output = gr.HTML(label="π Quick Strategist Analysis", elem_classes=["html-content"], elem_id="strategic_output")
detective_output = gr.HTML(label="π Detail Detective Analysis", elem_classes=["html-content"], elem_id="detective_output")
synthesis_output = gr.HTML(label="πΌ Final Orchestrated Solution (Llama 3.3 70B)", elem_classes=["html-content"], elem_id="synthesis_output")
orchestra_analyze_btn.click(
fn=run_full_orchestra,
inputs=[orchestra_problem, orchestra_context],
outputs=[deep_output, strategic_output, detective_output, synthesis_output]
)
# Examples Tab
with gr.TabItem("π‘ Example Problems"):
gr.Markdown("""
### Try these example problems to see the Orchestra in action:
**π’ Business Strategy:**
"Our tech startup has limited funding and needs to decide between focusing on product development or marketing. We have a working MVP but low user adoption. Budget is $50K for the next 6 months."
**π€ Ethical AI:**
"Should autonomous vehicles prioritize passenger safety over pedestrian safety in unavoidable accident scenarios? Consider the ethical, legal, and practical implications for mass adoption."
**π Environmental Policy:**
"Design a policy framework to reduce carbon emissions in urban areas by 40% within 10 years while maintaining economic growth and social equity."
**𧬠Scientific Research:**
"We've discovered a potential breakthrough in gene therapy for treating Alzheimer's, but it requires human trials. How should we proceed given the risks, benefits, regulatory requirements, and ethical considerations?"
**π Educational Innovation:**
"How can we redesign traditional university education to better prepare students for the rapidly changing job market of the 2030s, considering AI, remote work, and emerging technologies?"
**π Urban Planning:**
"A city of 500K people wants to build 10,000 affordable housing units but faces opposition from current residents, environmental concerns, and a $2B budget constraint. Develop a comprehensive solution."
**π Transportation Future:**
"Design a comprehensive transportation system for a smart city of 1 million people in 2035, integrating autonomous vehicles, public transit, and sustainable mobility."
""")
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; color: white; font-size: 16px;">
<h3 style="font-size: 22px;">πΌ How the Orchestra Works</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
<h4 style="font-size: 18px;">π Deep Thinker (DeepSeek R1)</h4>
<p style="font-size: 16px;">Provides thorough philosophical and theoretical analysis with comprehensive reasoning chains</p>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
<h4 style="font-size: 18px;">π Quick Strategist (Qwen3 32B)</h4>
<p style="font-size: 16px;">Delivers practical strategies, action plans, and rapid decision-making frameworks</p>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
<h4 style="font-size: 18px;">π Detail Detective (QwQ 32B)</h4>
<p style="font-size: 16px;">Conducts comprehensive investigation, fact-checking, and finds hidden connections</p>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;">
<h4 style="font-size: 18px;">πΌ Orchestra Conductor</h4>
<p style="font-size: 16px;">Synthesizes all perspectives into unified, comprehensive solutions</p>
</div>
</div>
<p style="margin-top: 20px; font-size: 16px;"><em>Built with β€οΈ using Groq's lightning-fast inference, Gradio, and beautiful HTML formatting</em></p>
</div>
""")
# Launch the app
if __name__ == "__main__":
app.launch(share=False) |