CRO / app.py
shukdevdatta123's picture
Update app.py
25bf549 verified
raw
history blame
29.3 kB
import gradio as gr
from groq import Groq
import json
import time
from typing import Dict, List, Tuple, Optional
import threading
from datetime import datetime
import html
import re
class ReasoningOrchestra:
def __init__(self):
self.client = None
self.is_api_key_set = False
def set_api_key(self, api_key: str) -> str:
"""Set the Groq API key and test connection"""
if not api_key.strip():
return "❌ Please enter a valid API key"
try:
self.client = Groq(api_key=api_key.strip())
# Test the connection with a simple request
test_completion = self.client.chat.completions.create(
model="llama3-8b-8192", # Using a smaller model for a quick validation
messages=[{"role": "user", "content": "Hello"}],
max_tokens=10
)
self.is_api_key_set = True
return "βœ… API key validated successfully! You can now use the Reasoning Orchestra."
except Exception as e:
self.is_api_key_set = False
return f"❌ API key validation failed: {str(e)}"
def format_text_to_html(self, text: str) -> str:
"""Convert text to HTML with proper formatting"""
if not text or text.strip() == "" or text == "No response generated":
return "<p style='color: #666; font-style: italic;'>No content was generated. This might be due to API limitations or model availability issues.</p>"
# Escape HTML characters first to prevent injection
text = html.escape(text)
# Convert markdown-style formatting to HTML
# Headers
text = re.sub(r'^### (.*$)', r'<h3>\1</h3>', text, flags=re.MULTILINE)
text = re.sub(r'^## (.*$)', r'<h2>\1</h2>', text, flags=re.MULTILINE)
text = re.sub(r'^# (.*$)', r'<h1>\1</h1>', text, flags=re.MULTILINE)
# Bold text
text = re.sub(r'\*\*(.*?)\*\*', r'<strong>\1</strong>', text)
# Italic text
text = re.sub(r'\*(.*?)\*', r'<em>\1</em>', text)
# Code blocks
text = re.sub(r'```(.*?)```', r'<pre><code>\1</code></pre>', text, flags=re.DOTALL)
text = re.sub(r'`(.*?)`', r'<code>\1</code>', text)
# Lists (improved logic)
lines = text.split('\n')
in_ul = False
in_ol = False
html_lines = []
for line in lines:
stripped = line.strip()
is_ul_item = stripped.startswith('- ') or stripped.startswith('* ')
is_ol_item = re.match(r'^\d+\.\s', stripped)
# Close lists if the pattern changes
if in_ul and not is_ul_item:
html_lines.append('</ul>')
in_ul = False
if in_ol and not is_ol_item:
html_lines.append('</ol>')
in_ol = False
# Process list items
if is_ul_item:
if not in_ul:
html_lines.append('<ul>')
in_ul = True
html_lines.append(f'<li>{stripped[2:]}</li>')
elif is_ol_item:
if not in_ol:
html_lines.append('<ol>')
in_ol = True
html_lines.append(f'<li>{re.sub(r"^\d+\.\\s", "", stripped)}</li>')
else:
# Regular paragraph or empty line
if stripped:
html_lines.append(f'<p>{line}</p>')
else:
html_lines.append('<br>')
# Close any open lists at the end
if in_ul:
html_lines.append('</ul>')
if in_ol:
html_lines.append('</ol>')
return '\n'.join(html_lines)
def deep_thinker_analyze(self, problem: str, context: str = "") -> Dict:
"""DeepSeek Coder V2 - The Deep Thinker"""
if not self.is_api_key_set:
return {"error": "API key not set"}
prompt = f"""You are the Deep Thinker in a collaborative reasoning system. Your role is to provide thorough, methodical analysis with extensive step-by-step reasoning.
Problem: {problem}
{f"Additional Context: {context}" if context else ""}
Please provide a comprehensive analysis with deep reasoning. Think through all implications, consider multiple angles, and provide detailed step-by-step logic. Be thorough and methodical in your approach."""
try:
completion = self.client.chat.completions.create(
model="deepseek-coder-v2-lite-instruct",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
max_tokens=8192,
top_p=0.95,
)
response_content = completion.choices[0].message.content
if not response_content or response_content.strip() == "":
response_content = "The model did not generate a response. This could be due to content filtering, model limitations, or API issues."
return {
"model": "DeepSeek Coder V2 (Deep Thinker)",
"role": "🎭 The Philosopher & Deep Analyzer",
"reasoning": response_content,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A"
}
except Exception as e:
return {"error": f"Deep Thinker error: {str(e)}"}
def quick_strategist_analyze(self, problem: str, context: str = "") -> Dict:
"""Llama3 70B - The Quick Strategist"""
if not self.is_api_key_set:
return {"error": "API key not set"}
prompt = f"""You are the Quick Strategist in a collaborative reasoning system. Your role is to provide fast, efficient strategic analysis with clear action plans.
Problem: {problem}
{f"Additional Context: {context}" if context else ""}
Please provide a strategic analysis with:
1. Key insights and patterns
2. Practical solutions
3. Implementation priorities
4. Risk assessment
5. Clear next steps
Be decisive and solution-focused. Provide concrete, actionable recommendations."""
try:
completion = self.client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
top_p=0.95,
max_tokens=8192
)
response_content = completion.choices[0].message.content
if not response_content or response_content.strip() == "":
response_content = "The model did not generate a response. This could be due to content filtering, model limitations, or API issues."
return {
"model": "Llama3 70B (Quick Strategist)",
"role": "πŸš€ The Strategic Decision Maker",
"reasoning": response_content,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A"
}
except Exception as e:
return {"error": f"Quick Strategist error: {str(e)}"}
def detail_detective_analyze(self, problem: str, context: str = "") -> Dict:
"""Mixtral 8x7B - The Detail Detective"""
if not self.is_api_key_set:
return {"error": "API key not set"}
prompt = f"""You are the Detail Detective in a collaborative reasoning system. Your role is to provide meticulous investigation and comprehensive fact-checking.
Problem: {problem}
{f"Additional Context: {context}" if context else ""}
Please conduct a thorough investigation including:
1. Detailed analysis of all aspects
2. Potential edge cases and considerations
3. Verification of assumptions
4. Historical context or precedents
5. Comprehensive pros and cons
6. Hidden connections or implications
Be extremely thorough and leave no stone unturned. Provide detailed evidence and reasoning for your conclusions."""
try:
completion = self.client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
top_p=0.9,
max_tokens=8192
)
response_content = completion.choices[0].message.content
if not response_content or response_content.strip() == "":
response_content = "The model did not generate a response. This might be due to content filtering or other API issues."
return {
"model": "Mixtral 8x7B (Detail Detective)",
"role": "πŸ” The Meticulous Investigator",
"reasoning": response_content,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A"
}
except Exception as e:
return {"error": f"Detail Detective error: {str(e)}"}
def synthesize_orchestra(self, deep_result: Dict, strategic_result: Dict, detective_result: Dict, original_problem: str) -> str:
"""Synthesize all three perspectives into a final orchestrated solution using Llama3 70B"""
if not self.is_api_key_set:
return "API key not set"
def extract_reasoning(result: Dict, model_name: str) -> str:
if result.get('error'):
return f"**{model_name} encountered an issue:** {result['error']}"
reasoning = result.get('reasoning', '')
if not reasoning or reasoning.strip() == "" or reasoning == "No response generated":
return f"**{model_name}** did not provide analysis (this may be due to model limitations or API issues)."
return reasoning
deep_reasoning = extract_reasoning(deep_result, "Deep Thinker")
strategic_reasoning = extract_reasoning(strategic_result, "Quick Strategist")
detective_reasoning = extract_reasoning(detective_result, "Detail Detective")
synthesis_prompt = f"""You are the Orchestra Conductor using Llama3 70B. You have received analytical perspectives from three different AI reasoning specialists on the same problem. Your job is to synthesize these into a comprehensive, unified solution.
ORIGINAL PROBLEM: {original_problem}
DEEP THINKER ANALYSIS (🎭 DeepSeek Coder V2):
{deep_reasoning}
STRATEGIC ANALYSIS (πŸš€ Llama3 70B):
{strategic_reasoning}
DETECTIVE INVESTIGATION (πŸ” Mixtral 8x7B):
{detective_reasoning}
As the Orchestra Conductor, please create a unified synthesis that:
1. Combines the best insights from all available analyses.
2. Addresses any gaps where models didn't provide input.
3. Resolves any contradictions between the analyses.
4. Provides a comprehensive final recommendation.
5. Highlights where the different reasoning styles complement each other.
6. Gives a clear, actionable conclusion.
If some models didn't provide analysis, work with what's available and note any limitations.
Format your response as a well-structured final solution that leverages all available reasoning approaches. Use clear sections and bullet points where appropriate for maximum clarity."""
try:
completion = self.client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": synthesis_prompt}],
temperature=0.7,
max_tokens=8192,
top_p=0.9
)
synthesis_content = completion.choices[0].message.content
if not synthesis_content or synthesis_content.strip() == "":
return "The synthesis could not be generated. This may be due to API limitations or the complexity of combining the different analyses."
return synthesis_content
except Exception as e:
return f"Synthesis error: {str(e)}"
# Initialize the orchestra
orchestra = ReasoningOrchestra()
def validate_api_key(api_key: str) -> str:
"""Validate the API key and return status"""
return orchestra.set_api_key(api_key)
def run_single_model(problem: str, model_choice: str, context: str = "") -> str:
"""Run a single model analysis"""
if not orchestra.is_api_key_set:
return """<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6;">
<h3>❌ API Key Required</h3>
<p>Please set your Groq API key first in the API Configuration section above.</p>
</div>"""
if not problem.strip():
return """<div style="color: orange; padding: 20px; border: 2px solid orange; border-radius: 10px; background-color: #fff3e6;">
<h3>⚠️ Problem Required</h3>
<p>Please enter a problem to analyze.</p>
</div>"""
start_time = time.time()
if model_choice == "Deep Thinker (DeepSeek Coder V2)":
result = orchestra.deep_thinker_analyze(problem, context)
elif model_choice == "Quick Strategist (Llama3 70B)":
result = orchestra.quick_strategist_analyze(problem, context)
elif model_choice == "Detail Detective (Mixtral 8x7B)":
result = orchestra.detail_detective_analyze(problem, context)
else:
return """<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6;">
<h3>❌ Invalid Model Selection</h3>
<p>Please select a valid model from the dropdown.</p>
</div>"""
elapsed_time = time.time() - start_time
if "error" in result:
return f"""<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6;">
<h3>❌ Error</h3>
<p>{result['error']}</p>
</div>"""
reasoning_html = orchestra.format_text_to_html(result['reasoning'])
formatted_output = f"""
<div style="border: 2px solid #28a745; border-radius: 15px; padding: 25px; margin: 15px 0; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);">
<div style="display: flex; align-items: center; margin-bottom: 20px; padding-bottom: 15px; border-bottom: 2px solid #28a745;">
<h2 style="margin: 0; color: #28a745;">{result['role']}</h2>
</div>
<div style="background-color: white; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<div style="display: flex; flex-wrap: wrap; gap: 20px; font-size: 14px; color: #666;">
<span><strong>Model:</strong> {result['model']}</span>
<span><strong>Analysis Time:</strong> {elapsed_time:.2f} seconds</span>
<span><strong>Timestamp:</strong> {result['timestamp']}</span>
<span><strong>Tokens:</strong> {result['tokens_used']}</span>
</div>
</div>
<div style="background-color: white; padding: 20px; border-radius: 10px; line-height: 1.6; font-size: 16px;">
{reasoning_html}
</div>
</div>
"""
return formatted_output
def run_full_orchestra(problem: str, context: str = "") -> Tuple[str, str, str, str]:
"""Run the full collaborative reasoning orchestra"""
if not orchestra.is_api_key_set:
error_msg = """<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6;">
<h3>❌ API Key Required</h3>
<p>Please set your Groq API key first in the API Configuration section above.</p>
</div>"""
return error_msg, error_msg, error_msg, error_msg
if not problem.strip():
error_msg = """<div style="color: orange; padding: 20px; border: 2px solid orange; border-radius: 10px; background-color: #fff3e6;">
<h3>⚠️ Problem Required</h3>
<p>Please enter a problem to analyze.</p>
</div>"""
return error_msg, error_msg, error_msg, error_msg
# NOTE: These calls are synchronous. For a more advanced version,
# you could use threading to run them concurrently.
deep_result = orchestra.deep_thinker_analyze(problem, context)
strategic_result = orchestra.quick_strategist_analyze(problem, context)
detective_result = orchestra.detail_detective_analyze(problem, context)
synthesis = orchestra.synthesize_orchestra(deep_result, strategic_result, detective_result, problem)
def format_result_html(result: Dict, color: str, icon: str) -> str:
if "error" in result:
return f"""<div style="color: red; padding: 20px; border: 2px solid red; border-radius: 10px; background-color: #ffe6e6;">
<h3>❌ Model Error</h3>
<p>{result['error']}</p>
<p style="font-size: 12px; color: #666; margin-top: 10px;"><em>This model may have restrictions or temporary availability issues. The other models can still provide analysis.</em></p>
</div>"""
reasoning_html = orchestra.format_text_to_html(result['reasoning'])
return f"""
<div style="border: 2px solid {color}; border-radius: 15px; padding: 25px; margin: 15px 0; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);">
<div style="display: flex; align-items: center; margin-bottom: 20px; padding-bottom: 15px; border-bottom: 2px solid {color};">
<span style="font-size: 24px; margin-right: 10px;">{icon}</span>
<h2 style="margin: 0; color: {color};">{result['model']}</h2>
</div>
<div style="background-color: white; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<div style="display: flex; flex-wrap: wrap; gap: 20px; font-size: 14px; color: #666;">
<span><strong>Timestamp:</strong> {result['timestamp']}</span>
<span><strong>Tokens:</strong> {result['tokens_used']}</span>
</div>
</div>
<div style="background-color: white; padding: 20px; border-radius: 10px; line-height: 1.6; font-size: 16px;">
{reasoning_html}
</div>
</div>
"""
deep_output = format_result_html(deep_result, "#6f42c1", "🎭")
strategic_output = format_result_html(strategic_result, "#fd7e14", "πŸš€")
detective_output = format_result_html(detective_result, "#20c997", "πŸ”")
synthesis_html = orchestra.format_text_to_html(synthesis)
synthesis_output = f"""
<div style="border: 2px solid #dc3545; border-radius: 15px; padding: 25px; margin: 15px 0; background: linear-gradient(135deg, #fff5f5 0%, #fee);">
<div style="display: flex; align-items: center; margin-bottom: 20px; padding-bottom: 15px; border-bottom: 2px solid #dc3545;">
<span style="font-size: 24px; margin-right: 10px;">🎼</span>
<h2 style="margin: 0; color: #dc3545;">Orchestra Conductor - Final Synthesis (Llama3 70B)</h2>
</div>
<div style="background-color: white; padding: 20px; border-radius: 10px; line-height: 1.6; font-size: 16px;">
{synthesis_html}
</div>
</div>
"""
return deep_output, strategic_output, detective_output, synthesis_output
# Custom CSS for better styling
custom_css = """
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; }
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
}
.api-key-section {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
.orchestra-header {
text-align: center;
background: linear-gradient(45deg, #f093fb 0%, #f5576c 100%);
padding: 20px;
border-radius: 15px;
margin-bottom: 20px;
color: white;
}
/* Custom styling for HTML output containers */
.html-content {
max-height: 600px; /* Set a max height for scrollability */
overflow-y: auto; /* Enable vertical scrolling */
border: 1px solid #ddd;
border-radius: 8px;
padding: 15px;
background-color: #fdfdfd;
}
.html-content h1, .html-content h2, .html-content h3 { color: #333; }
.html-content p { margin-bottom: 1em; }
.html-content ul, .html-content ol { padding-left: 25px; }
.html-content li { margin-bottom: 0.5em; }
.html-content pre { background-color: #f4f4f4; padding: 10px; border-radius: 5px; white-space: pre-wrap; word-wrap: break-word; }
.html-content code { font-family: 'Courier New', Courier, monospace; background-color: #eee; padding: 2px 4px; border-radius: 3px;}
"""
# Build the Gradio interface
with gr.Blocks(css=custom_css, title="Reasoning Orchestra") as app:
# Header
gr.HTML("""
<div class="orchestra-header">
<h1>🎼 The Collaborative Reasoning Orchestra</h1>
<p><em>Where AI models collaborate like musicians to solve complex problems</em></p>
<p><strong>Powered by Groq's LPUβ„’ Inference Engine for real-time results</strong></p>
</div>
""")
# API Key Section
with gr.Accordion("πŸ”‘ API Configuration", open=True):
with gr.Group():
gr.HTML('<div class="api-key-section"><h3 style="color: white; margin-top: 0;">Enter Your Groq API Key</h3></div>')
with gr.Row():
api_key_input = gr.Textbox(
label="Groq API Key",
type="password",
placeholder="gsk_...",
info="Get your free API key from https://console.groq.com/keys"
)
api_status = gr.Textbox(
label="API Status",
interactive=False,
placeholder="Enter API key and click validate..."
)
validate_btn = gr.Button("πŸ” Validate API Key", variant="primary")
# Main Interface Tabs
with gr.Tabs() as tabs:
# Single Model Tab
with gr.TabItem("🎯 Single Model Analysis"):
gr.Markdown("### Test individual reasoning models with formatted HTML output.")
with gr.Row(gap=16):
with gr.Column(scale=1):
single_problem = gr.Textbox(
label="Problem Statement",
placeholder="Enter the problem you want to analyze...",
lines=5
)
single_context = gr.Textbox(
label="Additional Context (Optional)",
placeholder="Any additional context or constraints...",
lines=3
)
model_choice = gr.Dropdown(
label="Choose Model",
choices=[
"Deep Thinker (DeepSeek Coder V2)",
"Quick Strategist (Llama3 70B)",
"Detail Detective (Mixtral 8x7B)"
],
value="Quick Strategist (Llama3 70B)"
)
single_analyze_btn = gr.Button("πŸš€ Analyze Problem", variant="primary")
with gr.Column(scale=2):
single_output = gr.HTML(label="Analysis Result", elem_classes=["html-content"])
# Full Orchestra Tab
with gr.TabItem("🎼 Full Orchestra Collaboration"):
gr.Markdown("### Run all models collaboratively with a Llama3 70B conductor to synthesize a final solution.")
with gr.Row(gap=16):
with gr.Column(scale=1):
orchestra_problem = gr.Textbox(
label="Complex Problem Statement",
placeholder="Enter a problem that benefits from multiple reasoning perspectives...",
lines=8
)
orchestra_context = gr.Textbox(
label="Additional Context (Optional)",
placeholder="Background information, constraints, etc...",
lines=4
)
orchestra_analyze_btn = gr.Button("🎼 Start Orchestra Analysis", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("🎼 Final Synthesis"):
synthesis_output = gr.HTML(label="Final Orchestrated Solution (Llama3 70B)", elem_classes=["html-content"])
with gr.TabItem("🎭 Deep Thinker"):
deep_output = gr.HTML(label="Deep Thinker Analysis", elem_classes=["html-content"])
with gr.TabItem("πŸš€ Quick Strategist"):
strategic_output = gr.HTML(label="Quick Strategist Analysis", elem_classes=["html-content"])
with gr.TabItem("πŸ” Detail Detective"):
detective_output = gr.HTML(label="Detail Detective Analysis", elem_classes=["html-content"])
# Examples Tab
with gr.TabItem("πŸ’‘ Example Problems"):
gr.Markdown("""
### Try these example problems to see the Orchestra in action:
**🏒 Business Strategy:**
"Our tech startup has limited funding and needs to decide between focusing on product development or marketing. We have a working MVP but low user adoption. Budget is $50K for the next 6 months."
**πŸ€– Ethical AI:** "Should autonomous vehicles prioritize passenger safety over pedestrian safety in unavoidable accident scenarios? Consider the ethical, legal, and practical implications for mass adoption."
**🌍 Environmental Policy:**
"Design a policy framework to reduce carbon emissions in urban areas by 40% within 10 years while maintaining economic growth and social equity."
**πŸŽ“ Educational Innovation:**
"How can we redesign traditional university education to better prepare students for the rapidly changing job market of the 2030s, considering AI, remote work, and emerging technologies?"
**🏠 Urban Planning:**
"A city of 500K people wants to build 10,000 affordable housing units but faces opposition from current residents, environmental concerns, and a $2B budget constraint. Develop a comprehensive solution."
""")
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding: 20px; background: #f8f9fa; border-radius: 15px; border: 1px solid #dee2e6;">
<h3>🎼 How the Orchestra Works</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin: 20px 0; text-align: left;">
<div style="background: #fff; padding: 15px; border-radius: 10px; border: 1px solid #eee;">
<h4>🎭 Deep Thinker</h4>
<p>Provides thorough philosophical and theoretical analysis with comprehensive reasoning chains.</p>
</div>
<div style="background: #fff; padding: 15px; border-radius: 10px; border: 1px solid #eee;">
<h4>πŸš€ Quick Strategist</h4>
<p>Delivers practical strategies, action plans, and rapid decision-making frameworks.</p>
</div>
<div style="background: #fff; padding: 15px; border-radius: 10px; border: 1px solid #eee;">
<h4>πŸ” Detail Detective</h4>
<p>Conducts comprehensive investigation, fact-checking, and finds hidden connections.</p>
</div>
<div style="background: #fff; padding: 15px; border-radius: 10px; border: 1px solid #eee;">
<h4>🎼 Orchestra Conductor</h4>
<p>Synthesizes all perspectives into a unified, comprehensive final solution.</p>
</div>
</div>
<p style="margin-top: 20px; color: #6c757d;"><em>Built with ❀️ using Groq, Gradio, and Python</em></p>
</div>
""")
# --- Event Handlers ---
validate_btn.click(
fn=validate_api_key,
inputs=[api_key_input],
outputs=[api_status]
)
single_analyze_btn.click(
fn=run_single_model,
inputs=[single_problem, model_choice, single_context],
outputs=[single_output]
)
orchestra_analyze_btn.click(
fn=run_full_orchestra,
inputs=[orchestra_problem, orchestra_context],
outputs=[deep_output, strategic_output, detective_output, synthesis_output]
)
# Launch the app
if __name__ == "__main__":
app.launch(share=False) # Set share=True to create a temporary public link