import gradio as gr # from groq import Groq import json import time from typing import Dict, List, Tuple, Optional import threading from datetime import datetime import html import re class ReasoningOrchestra: def __init__(self): self.client = None self.is_api_key_set = False def set_api_key(self, api_key: str) -> str: """Set the Groq API key and test connection""" if not api_key.strip(): return "❌ Please enter a valid API key" try: self.client = Groq(api_key=api_key.strip()) # Test the connection with a simple request test_completion = self.client.chat.completions.create( model="qwen/qwen3-32b", messages=[{"role": "user", "content": "Hello"}], max_completion_tokens=10 ) self.is_api_key_set = True return "✅ API key validated successfully! You can now use the Reasoning Orchestra." except Exception as e: self.is_api_key_set = False return f"❌ API key validation failed: {str(e)}" def format_text_to_html(self, text: str) -> str: """Convert text to HTML with proper formatting and consistent font size""" if not text or text.strip() == "" or text == "No response generated": return "

No content was generated. This might be due to API limitations or model availability issues.

" # Escape HTML characters first text = html.escape(text) # Convert markdown-style formatting to HTML with consistent font sizes # Headers text = re.sub(r'^### (.*$)', r'

\1

', text, flags=re.MULTILINE) text = re.sub(r'^## (.*$)', r'

\1

', text, flags=re.MULTILINE) text = re.sub(r'^# (.*$)', r'

\1

', text, flags=re.MULTILINE) # Bold text text = re.sub(r'\*\*(.*?)\*\*', r'\1', text) # Italic text text = re.sub(r'\*(.*?)\*', r'\1', text) # Code blocks text = re.sub(r'```(.*?)```', r'
\1
', text, flags=re.DOTALL) text = re.sub(r'`(.*?)`', r'\1', text) # Lists lines = text.split('\n') in_list = False formatted_lines = [] for line in lines: stripped = line.strip() if stripped.startswith('- ') or stripped.startswith('* '): if not in_list: formatted_lines.append('' if any('
  • ' in line for line in formatted_lines[-5:]) else '') in_list = False if stripped: formatted_lines.append(f'

    {line}

    ') else: formatted_lines.append('
    ') if in_list: formatted_lines.append('') return '\n'.join(formatted_lines) def deep_thinker_analyze(self, problem: str, context: str = "") -> Dict: """DeepSeek R1 - The Deep Thinker""" if not self.is_api_key_set: return {"error": "API key not set"} prompt = f"""You are the Deep Thinker in a collaborative reasoning system. Your role is to provide thorough, methodical analysis with extensive step-by-step reasoning. Problem: {problem} {f"Additional Context: {context}" if context else ""} Please provide a comprehensive analysis with deep reasoning. Think through all implications, consider multiple angles, and provide detailed step-by-step logic. Be thorough and methodical in your approach.""" try: completion = self.client.chat.completions.create( model="deepseek-r1-distill-llama-70b", messages=[{"role": "user", "content": prompt}], temperature=0.6, max_completion_tokens=8192, top_p=0.95, reasoning_format="raw" ) response_content = completion.choices[0].message.content if not response_content or response_content.strip() == "": response_content = "The model did not generate a response. This could be due to content filtering, model limitations, or API issues." return { "model": "DeepSeek R1 (Deep Thinker)", "role": "🎭 The Philosopher & Deep Analyzer", "reasoning": response_content, "timestamp": datetime.now().strftime("%H:%M:%S"), "tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A" } except Exception as e: return {"error": f"Deep Thinker error: {str(e)}"} def quick_strategist_analyze(self, problem: str, context: str = "") -> Dict: """Qwen3 32B - The Quick Strategist""" if not self.is_api_key_set: return {"error": "API key not set"} prompt = f"""You are the Quick Strategist in a collaborative reasoning system. Your role is to provide fast, efficient strategic analysis with clear action plans. Problem: {problem} {f"Additional Context: {context}" if context else ""} Please provide a strategic analysis with: 1. Key insights and patterns 2. Practical solutions 3. Implementation priorities 4. Risk assessment 5. Clear next steps Be decisive and solution-focused. Provide concrete, actionable recommendations.""" try: completion = self.client.chat.completions.create( model="qwen/qwen3-32b", messages=[{"role": "user", "content": prompt}], temperature=0.6, top_p=0.95, max_completion_tokens=8192 ) response_content = completion.choices[0].message.content if not response_content or response_content.strip() == "": response_content = "The model did not generate a response. This could be due to content filtering, model limitations, or API issues." return { "model": "Qwen3 32B (Quick Strategist)", "role": "🚀 The Strategic Decision Maker", "reasoning": response_content, "timestamp": datetime.now().strftime("%H:%M:%S"), "tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A" } except Exception as e: return {"error": f"Quick Strategist error: {str(e)}"} def detail_detective_analyze(self, problem: str, context: str = "") -> Dict: """QwQ 32B - The Detail Detective""" if not self.is_api_key_set: return {"error": "API key not set"} prompt = f"""You are the Detail Detective in a collaborative reasoning system. Your role is to provide meticulous investigation and comprehensive fact-checking. Problem: {problem} {f"Additional Context: {context}" if context else ""} Please conduct a thorough investigation including: 1. Detailed analysis of all aspects 2. Potential edge cases and considerations 3. Verification of assumptions 4. Historical context or precedents 5. Comprehensive pros and cons 6. Hidden connections or implications Be extremely thorough and leave no stone unturned. Provide detailed evidence and reasoning for your conclusions.""" try: completion = self.client.chat.completions.create( model="qwen-qwq-32b", messages=[{"role": "user", "content": prompt}], temperature=0.7, top_p=0.9, max_completion_tokens=8192 ) response_content = completion.choices[0].message.content if not response_content or response_content.strip() == "": fallback_prompt = f"Analyze this problem in detail: {problem}" fallback_completion = self.client.chat.completions.create( model="qwen-qwq-32b", messages=[{"role": "user", "content": fallback_prompt}], temperature=0.5, max_completion_tokens=8192 ) response_content = fallback_completion.choices[0].message.content if not response_content or response_content.strip() == "": response_content = "The QwQ model encountered an issue generating content. This could be due to the complexity of the prompt, content filtering, or temporary model availability issues. The model may work better with simpler, more direct questions." return { "model": "QwQ 32B (Detail Detective)", "role": "🔍 The Meticulous Investigator", "reasoning": response_content, "timestamp": datetime.now().strftime("%H:%M:%S"), "tokens_used": getattr(completion.usage, 'total_tokens', 'N/A') if hasattr(completion, 'usage') and completion.usage else "N/A" } except Exception as e: error_msg = f"Detail Detective error: {str(e)}" if "model" in str(e).lower() or "not found" in str(e).lower(): error_msg += "\n\nNote: The QwQ model may not be available in your region or may have usage restrictions. You can still use the other models in the orchestra." return {"error": error_msg} def synthesize_orchestra(self, deep_result: Dict, strategic_result: Dict, detective_result: Dict, original_problem: str) -> str: """Synthesize all three perspectives into a final orchestrated solution using Llama 3.3 70B""" if not self.is_api_key_set: return "API key not set" def extract_reasoning(result: Dict, model_name: str) -> str: if result.get('error'): return f"**{model_name} encountered an issue:** {result['error']}" reasoning = result.get('reasoning', '') if not reasoning or reasoning.strip() == "" or reasoning == "No response generated": return f"**{model_name}** did not provide analysis (this may be due to model limitations or API issues)." return reasoning deep_reasoning = extract_reasoning(deep_result, "Deep Thinker") strategic_reasoning = extract_reasoning(strategic_result, "Quick Strategist") detective_reasoning = extract_reasoning(detective_result, "Detail Detective") synthesis_prompt = f"""You are the Orchestra Conductor using Llama 3.3 70B Versatile model. You have received analytical perspectives from three different AI reasoning specialists on the same problem. Your job is to synthesize these into a comprehensive, unified solution. ORIGINAL PROBLEM: {original_problem} DEEP THINKER ANALYSIS (🎭 DeepSeek R1): {deep_reasoning} STRATEGIC ANALYSIS (🚀 Qwen3 32B): {strategic_reasoning} DETECTIVE INVESTIGATION (🔍 QwQ 32B): {detective_reasoning} As the Orchestra Conductor, please create a unified synthesis that: 1. Combines the best insights from all available analyses 2. Addresses any gaps where models didn't provide input 3. Resolves any contradictions between the analyses 4. Provides a comprehensive final recommendation 5. Highlights where the different reasoning styles complement each other 6. Gives a clear, actionable conclusion If some models didn't provide analysis, work with what's available and note any limitations. Format your response as a well-structured final solution that leverages all available reasoning approaches. Use clear sections and bullet points where appropriate for maximum clarity.""" try: completion = self.client.chat.completions.create( model="llama-3.3-70b-versatile", messages=[{"role": "user", "content": synthesis_prompt}], temperature=0.7, max_completion_tokens=8192, top_p=0.9 ) synthesis_content = completion.choices[0].message.content if not synthesis_content or synthesis_content.strip() == "": return "The synthesis could not be generated. This may be due to API limitations or the complexity of combining the different analyses." return synthesis_content except Exception as e: return f"Synthesis error: {str(e)}" # Initialize the orchestra orchestra = ReasoningOrchestra() def validate_api_key(api_key: str) -> str: """Validate the API key and return status""" return orchestra.set_api_key(api_key) def run_single_model(problem: str, model_choice: str, context: str = "") -> str: """Run a single model analysis""" if not orchestra.is_api_key_set: return """

    ❌ API Key Required

    Please set your Groq API key first in the API Configuration section above.

    """ if not problem.strip(): return """

    ⚠️ Problem Required

    Please enter a problem to analyze.

    """ start_time = time.time() if model_choice == "Deep Thinker (DeepSeek R1)": result = orchestra.deep_thinker_analyze(problem, context) elif model_choice == "Quick Strategist (Qwen3 32B)": result = orchestra.quick_strategist_analyze(problem, context) elif model_choice == "Detail Detective (QwQ 32B)": result = orchestra.detail_detective_analyze(problem, context) else: return """

    ❌ Invalid Model Selection

    Please select a valid model from the dropdown.

    """ elapsed_time = time.time() - start_time if "error" in result: return f"""

    ❌ Error

    {result['error']}

    """ # Format the response as HTML reasoning_html = orchestra.format_text_to_html(result['reasoning']) formatted_output = f"""

    {result['role']}

    Model: {result['model']} Analysis Time: {elapsed_time:.2f} seconds Timestamp: {result['timestamp']} Tokens: {result['tokens_used']}
    {reasoning_html}
    """ return formatted_output def run_full_orchestra(problem: str, context: str = "") -> Tuple[str, str, str, str]: """Run the full collaborative reasoning orchestra""" if not orchestra.is_api_key_set: error_msg = """

    ❌ API Key Required

    Please set your Groq API key first in the API Configuration section above.

    """ return error_msg, error_msg, error_msg, error_msg if not problem.strip(): error_msg = """

    ⚠️ Problem Required

    Please enter a problem to analyze.

    """ return error_msg, error_msg, error_msg, error_msg # Phase 1: Deep Thinker deep_result = orchestra.deep_thinker_analyze(problem, context) # Phase 2: Quick Strategist strategic_result = orchestra.quick_strategist_analyze(problem, context) # Phase 3: Detail Detective detective_result = orchestra.detail_detective_analyze(problem, context) # Phase 4: Synthesis using Llama 3.3 70B synthesis = orchestra.synthesize_orchestra(deep_result, strategic_result, detective_result, problem) def format_result_html(result: Dict, color: str, icon: str) -> str: if "error" in result: return f"""

    ❌ Model Error

    {result['error']}

    This model may have restrictions or temporary availability issues. The other models can still provide analysis.

    """ reasoning_html = orchestra.format_text_to_html(result['reasoning']) return f"""
    {icon}

    {result['model']}

    Timestamp: {result['timestamp']} Tokens: {result['tokens_used']}
    {reasoning_html}
    """ deep_output = format_result_html(deep_result, "#6f42c1", "🎭") strategic_output = format_result_html(strategic_result, "#fd7e14", "🚀") detective_output = format_result_html(detective_result, "#20c997", "🔍") synthesis_html = orchestra.format_text_to_html(synthesis) synthesis_output = f"""
    🎼

    Orchestra Conductor - Final Synthesis (Llama 3.3 70B Versatile)

    {synthesis_html}
    """ return deep_output, strategic_output, detective_output, synthesis_output # Custom CSS for consistent width and styling custom_css = """ .gradio-container { max-width: 1200px !important; margin: 0 auto !important; font-size: 16px !important; } .api-key-section { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; margin-bottom: 20px; } .model-section { border: 2px solid #e1e5e9; border-radius: 10px; padding: 15px; margin: 10px 0; } .orchestra-header { text-align: center; background: linear-gradient(45deg, #f093fb 0%, #f5576c 100%); padding: 20px; border-radius: 15px; margin-bottom: 20px; font-size: 16px; } .status-box { background-color: #f8f9fa; border-left: 4px solid #28a745; padding: 15px; margin: 10px 0; border-radius: 5px; font-size: 16px; } /* Consistent width for all tabs */ .tab { width: 100% !important; max-width: 1200px !important; } /* Custom styling for HTML outputs with fixed width */ .html-content { width: 100% !important; max-width: 1200px !important; max-height: 600px; overflow-y: auto; border: 1px solid #ddd; border-radius: 8px; padding: 10px; background-color: #fafafa; font-size: 16px !important; } /* Ensure all text has consistent font size */ p, li, span, div, textarea, input, select, button { font-size: 16px !important; } h1 { font-size: 24px !important; } h2 { font-size: 22px !important; } h3 { font-size: 20px !important; } h4 { font-size: 18px !important; } /* Make sure code blocks are readable */ pre, code { font-size: 15px !important; } /* Single model analysis layout */ .single-model-container { display: flex; flex-direction: column; gap: 20px; width: 100% !important; } .single-model-inputs { width: 100% !important; } .single-model-output { width: 100% !important; margin-top: 20px; } /* Full orchestra layout */ .orchestra-outputs { display: flex; flex-direction: column; gap: 20px; width: 100% !important; } """ # Build the Gradio interface with gr.Blocks(css=custom_css, theme=gr.themes.Ocean(), title="Reasoning Orchestra") as app: # Header gr.HTML("""

    🎼 The Collaborative Reasoning Orchestra

    Where AI models collaborate like musicians in an orchestra to solve complex problems

    Now with Llama 3.3 70B Versatile as Orchestra Conductor & Enhanced HTML-Formatted Responses!

    """) # API Key Section with gr.Group(): gr.HTML('

    🔑 API Configuration

    ') with gr.Row(): api_key_input = gr.Textbox( label="Enter your Groq API Key", type="password", placeholder="gsk_...", info="Get your free API key from https://console.groq.com/keys", elem_id="api_key_input" ) api_status = gr.Textbox( label="API Status", interactive=False, placeholder="Enter API key to validate...", elem_id="api_status" ) validate_btn = gr.Button("🔍 Validate API Key", variant="primary", elem_id="validate_btn") validate_btn.click( fn=validate_api_key, inputs=[api_key_input], outputs=[api_status] ) # Main Interface Tabs with gr.Tabs() as tabs: # Single Model Tab with gr.TabItem("🎯 Single Model Analysis"): gr.Markdown("### Test individual reasoning models with beautiful HTML output") with gr.Column(elem_classes=["single-model-container"]): with gr.Column(elem_classes=["single-model-inputs"]): single_problem = gr.Textbox( label="Problem Statement", placeholder="Enter the problem you want to analyze...", lines=4, elem_id="single_problem" ) single_context = gr.Textbox( label="Additional Context (Optional)", placeholder="Any additional context or constraints...", lines=2, elem_id="single_context" ) model_choice = gr.Dropdown( label="Choose Model", choices=[ "Deep Thinker (DeepSeek R1)", "Quick Strategist (Qwen3 32B)", "Detail Detective (QwQ 32B)" ], value="Deep Thinker (DeepSeek R1)", elem_id="model_choice" ) single_analyze_btn = gr.Button("🚀 Analyze with HTML Output", variant="primary", size="lg", elem_id="single_analyze_btn") with gr.Column(elem_classes=["single-model-output"]): single_output = gr.HTML(label="Analysis Result", elem_classes=["html-content"], elem_id="single_output") single_analyze_btn.click( fn=run_single_model, inputs=[single_problem, model_choice, single_context], outputs=[single_output] ) # Full Orchestra Tab with gr.TabItem("🎼 Full Orchestra Collaboration"): gr.Markdown("### Run all three models collaboratively with Llama 3.3 70B as Orchestra Conductor and stunning HTML-formatted output") with gr.Column(): with gr.Row(): with gr.Column(scale=1): orchestra_problem = gr.Textbox( label="Problem Statement", placeholder="Enter a complex problem that benefits from multiple reasoning perspectives...", lines=6, elem_id="orchestra_problem" ) orchestra_context = gr.Textbox( label="Additional Context (Optional)", placeholder="Background information, constraints, or specific requirements...", lines=3, elem_id="orchestra_context" ) orchestra_analyze_btn = gr.Button("🎼 Start Orchestra Analysis", variant="primary", size="lg", elem_id="orchestra_analyze_btn") # Orchestra Results with gr.Column(elem_classes=["orchestra-outputs"]): deep_output = gr.HTML(label="🎭 Deep Thinker Analysis", elem_classes=["html-content"], elem_id="deep_output") strategic_output = gr.HTML(label="🚀 Quick Strategist Analysis", elem_classes=["html-content"], elem_id="strategic_output") detective_output = gr.HTML(label="🔍 Detail Detective Analysis", elem_classes=["html-content"], elem_id="detective_output") synthesis_output = gr.HTML(label="🎼 Final Orchestrated Solution (Llama 3.3 70B)", elem_classes=["html-content"], elem_id="synthesis_output") orchestra_analyze_btn.click( fn=run_full_orchestra, inputs=[orchestra_problem, orchestra_context], outputs=[deep_output, strategic_output, detective_output, synthesis_output] ) # Examples Tab with gr.TabItem("💡 Example Problems"): gr.Markdown(""" ### Try these example problems to see the Orchestra in action: **🏢 Business Strategy:** "Our tech startup has limited funding and needs to decide between focusing on product development or marketing. We have a working MVP but low user adoption. Budget is $50K for the next 6 months." **🤖 Ethical AI:** "Should autonomous vehicles prioritize passenger safety over pedestrian safety in unavoidable accident scenarios? Consider the ethical, legal, and practical implications for mass adoption." **🌍 Environmental Policy:** "Design a policy framework to reduce carbon emissions in urban areas by 40% within 10 years while maintaining economic growth and social equity." **🧬 Scientific Research:** "We've discovered a potential breakthrough in gene therapy for treating Alzheimer's, but it requires human trials. How should we proceed given the risks, benefits, regulatory requirements, and ethical considerations?" **🎓 Educational Innovation:** "How can we redesign traditional university education to better prepare students for the rapidly changing job market of the 2030s, considering AI, remote work, and emerging technologies?" **🏠 Urban Planning:** "A city of 500K people wants to build 10,000 affordable housing units but faces opposition from current residents, environmental concerns, and a $2B budget constraint. Develop a comprehensive solution." **🚗 Transportation Future:** "Design a comprehensive transportation system for a smart city of 1 million people in 2035, integrating autonomous vehicles, public transit, and sustainable mobility." """) # Footer gr.HTML("""

    🎼 How the Orchestra Works

    🎭 Deep Thinker (DeepSeek R1)

    Provides thorough philosophical and theoretical analysis with comprehensive reasoning chains

    🚀 Quick Strategist (Qwen3 32B)

    Delivers practical strategies, action plans, and rapid decision-making frameworks

    🔍 Detail Detective (QwQ 32B)

    Conducts comprehensive investigation, fact-checking, and finds hidden connections

    🎼 Orchestra Conductor

    Synthesizes all perspectives into unified, comprehensive solutions

    Built with ❤️ using Groq's lightning-fast inference, Gradio, and beautiful HTML formatting

    """) # Launch the app if __name__ == "__main__": app.launch(share=False)