shukdevdatta123 commited on
Commit
169b01a
·
verified ·
1 Parent(s): d4f483b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -17,20 +17,20 @@ def load_pdf(file):
17
 
18
  # Summarization function using GPT-4
19
  def summarize_pdf(file, openai_api_key):
20
- # Set the API key dynamically
21
  openai.api_key = openai_api_key
22
 
23
  # Load and process the PDF
24
  documents = load_pdf(file)
25
 
26
  # Create embeddings for the documents
27
- embeddings = OpenAIEmbeddings()
28
 
29
  # Use LangChain's FAISS Vector Store to store and search the embeddings
30
  vector_store = FAISS.from_documents(documents, embeddings)
31
 
32
  # Create a RetrievalQA chain for summarization
33
- llm = ChatOpenAI(model="gpt-4o") # Using GPT-4 as the LLM
34
  qa_chain = RetrievalQA.from_chain_type(
35
  llm=llm,
36
  chain_type="stuff",
@@ -43,14 +43,14 @@ def summarize_pdf(file, openai_api_key):
43
 
44
  # Function to handle user queries and provide answers from the document
45
  def query_pdf(file, user_query, openai_api_key):
46
- # Set the API key dynamically
47
  openai.api_key = openai_api_key
48
 
49
  # Load and process the PDF
50
  documents = load_pdf(file)
51
 
52
  # Create embeddings for the documents
53
- embeddings = OpenAIEmbeddings()
54
 
55
  # Use LangChain's FAISS Vector Store to store and search the embeddings
56
  vector_store = FAISS.from_documents(documents, embeddings)
 
17
 
18
  # Summarization function using GPT-4
19
  def summarize_pdf(file, openai_api_key):
20
+ # Set the OpenAI API key dynamically
21
  openai.api_key = openai_api_key
22
 
23
  # Load and process the PDF
24
  documents = load_pdf(file)
25
 
26
  # Create embeddings for the documents
27
+ embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
28
 
29
  # Use LangChain's FAISS Vector Store to store and search the embeddings
30
  vector_store = FAISS.from_documents(documents, embeddings)
31
 
32
  # Create a RetrievalQA chain for summarization
33
+ llm = ChatOpenAI(model="gpt-4") # Using GPT-4 as the LLM
34
  qa_chain = RetrievalQA.from_chain_type(
35
  llm=llm,
36
  chain_type="stuff",
 
43
 
44
  # Function to handle user queries and provide answers from the document
45
  def query_pdf(file, user_query, openai_api_key):
46
+ # Set the OpenAI API key dynamically
47
  openai.api_key = openai_api_key
48
 
49
  # Load and process the PDF
50
  documents = load_pdf(file)
51
 
52
  # Create embeddings for the documents
53
+ embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
54
 
55
  # Use LangChain's FAISS Vector Store to store and search the embeddings
56
  vector_store = FAISS.from_documents(documents, embeddings)