Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import gradio as gr
|
3 |
+
from langchain.chains import ConversationalChain
|
4 |
+
from langchain.llms import OpenAI
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
10 |
+
from PyPDF2 import PdfReader
|
11 |
+
import os
|
12 |
+
|
13 |
+
# Function to load and process the PDF document
|
14 |
+
def load_pdf(file):
|
15 |
+
# Load the PDF using PyPDF2 or LangChain's built-in loader
|
16 |
+
loader = PyPDFLoader(file.name)
|
17 |
+
documents = loader.load()
|
18 |
+
return documents
|
19 |
+
|
20 |
+
# Summarization function using GPT-4
|
21 |
+
def summarize_pdf(file, openai_api_key):
|
22 |
+
# Set the API key dynamically
|
23 |
+
openai.api_key = openai_api_key
|
24 |
+
|
25 |
+
documents = load_pdf(file)
|
26 |
+
|
27 |
+
# Create embeddings for the documents
|
28 |
+
embeddings = OpenAIEmbeddings()
|
29 |
+
|
30 |
+
# Use LangChain's FAISS Vector Store to store and search the embeddings
|
31 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
32 |
+
|
33 |
+
# Create a conversational chain that allows us to query the document
|
34 |
+
llm = ChatOpenAI(model="gpt-4") # Using GPT-4 as the LLM
|
35 |
+
conversational_chain = ConversationalChain(
|
36 |
+
llm=llm,
|
37 |
+
vectorstore=vector_store,
|
38 |
+
verbose=True
|
39 |
+
)
|
40 |
+
|
41 |
+
# Query the model for a summary
|
42 |
+
response = conversational_chain.run("Summarize the content of the research paper.")
|
43 |
+
return response
|
44 |
+
|
45 |
+
# Function to handle user queries and provide answers from the document
|
46 |
+
def query_pdf(file, user_query, openai_api_key):
|
47 |
+
# Set the API key dynamically
|
48 |
+
openai.api_key = openai_api_key
|
49 |
+
|
50 |
+
documents = load_pdf(file)
|
51 |
+
|
52 |
+
# Create embeddings for the documents
|
53 |
+
embeddings = OpenAIEmbeddings()
|
54 |
+
|
55 |
+
# Use LangChain's FAISS Vector Store to store and search the embeddings
|
56 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
57 |
+
|
58 |
+
# Create a conversational chain that allows us to query the document
|
59 |
+
llm = ChatOpenAI(model="gpt-4") # Using GPT-4 as the LLM
|
60 |
+
conversational_chain = ConversationalChain(
|
61 |
+
llm=llm,
|
62 |
+
vectorstore=vector_store,
|
63 |
+
verbose=True
|
64 |
+
)
|
65 |
+
|
66 |
+
# Query the model for the user query
|
67 |
+
response = conversational_chain.run(user_query)
|
68 |
+
return response
|
69 |
+
|
70 |
+
# Define Gradio interface for the summarization
|
71 |
+
def create_gradio_interface():
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
gr.Markdown("### ChatPDF and Research Paper Summarizer using GPT-4 and LangChain")
|
74 |
+
|
75 |
+
# Input field for API Key
|
76 |
+
with gr.Row():
|
77 |
+
openai_api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="Enter your OpenAI API key here")
|
78 |
+
|
79 |
+
with gr.Tab("Summarize PDF"):
|
80 |
+
with gr.Row():
|
81 |
+
pdf_file = gr.File(label="Upload PDF Document")
|
82 |
+
summarize_btn = gr.Button("Summarize")
|
83 |
+
summary_output = gr.Textbox(label="Summary", interactive=False)
|
84 |
+
|
85 |
+
summarize_btn.click(summarize_pdf, inputs=[pdf_file, openai_api_key_input], outputs=summary_output)
|
86 |
+
|
87 |
+
with gr.Tab("Ask Questions"):
|
88 |
+
with gr.Row():
|
89 |
+
pdf_file_q = gr.File(label="Upload PDF Document")
|
90 |
+
user_input = gr.Textbox(label="Enter your question")
|
91 |
+
answer_output = gr.Textbox(label="Answer", interactive=False)
|
92 |
+
|
93 |
+
user_input.submit(query_pdf, inputs=[pdf_file_q, user_input, openai_api_key_input], outputs=answer_output)
|
94 |
+
user_input.submit(None, None, answer_output) # Clear answer when typing new query
|
95 |
+
|
96 |
+
return demo
|
97 |
+
|
98 |
+
# Run Gradio app
|
99 |
+
if __name__ == "__main__":
|
100 |
+
demo = create_gradio_interface()
|
101 |
+
demo.launch(debug=True)
|