File size: 9,764 Bytes
524940d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import gradio as gr
import PyPDF2
import io
import os
from groq import Groq
import tempfile
import traceback

def extract_text_from_pdf(pdf_file):
    """Extract text from uploaded PDF file"""
    try:
        if pdf_file is None:
            return None, "No PDF file provided"
        
        # Read the PDF file
        with open(pdf_file.name, 'rb') as file:
            pdf_reader = PyPDF2.PdfReader(file)
            text = ""
            
            # Extract text from all pages
            for page_num in range(len(pdf_reader.pages)):
                page = pdf_reader.pages[page_num]
                text += page.extract_text() + "\n"
            
            if not text.strip():
                return None, "Could not extract text from PDF. The PDF might be image-based or encrypted."
            
            return text, None
    
    except Exception as e:
        return None, f"Error reading PDF: {str(e)}"

def summarize_with_groq(api_key, text):
    """Generate summary using Groq API"""
    try:
        if not api_key or not api_key.strip():
            return "Please enter your Groq API key"
        
        if not text or not text.strip():
            return "No text to summarize"
        
        # Initialize Groq client
        client = Groq(api_key=api_key.strip())
        
        # System prompt for summarization
        system_prompt = """You are a highly capable language model specialized in document summarization. Your task is to read and understand the full content of a multi-page PDF document and generate a clear, accurate, and detailed summary of the entire document.
Focus on capturing all main ideas, key points, arguments, findings, and conclusions presented throughout the document. If the document is technical, legal, academic, or contains structured sections (e.g., introduction, methods, results, discussion), maintain the logical flow and structure while expressing the content in a comprehensive and accessible manner.
Avoid unnecessary simplification. Include important details, supporting evidence, and nuanced insights that reflect the depth of the original material. Do not copy the text verbatim.
Output only the summary. Do not explain your process. Use a neutral, professional, and informative tone. The summary should provide a full understanding of the document to someone who has not read it."""

        # Create completion with optimal hyperparameters
        completion = client.chat.completions.create(
            model="llama-3.3-70b-versatile",
            messages=[
                {
                    "role": "system",
                    "content": system_prompt
                },
                {
                    "role": "user", 
                    "content": f"Please summarize the following document:\n\n{text}"
                }
            ],
            temperature=0.3,        # Low randomness for factual, focused summaries
            max_completion_tokens=2048,  # Increased to allow longer summaries
            top_p=0.9,             # Allows some diversity while still grounded
            stream=False,
            stop=None,
        )
        
        summary = completion.choices[0].message.content
        return summary
    
    except Exception as e:
        error_msg = f"Error generating summary: {str(e)}"
        if "authentication" in str(e).lower() or "api" in str(e).lower():
            error_msg += "\n\nPlease check your Groq API key and ensure it's valid."
        return error_msg

def process_pdf_and_summarize(api_key, pdf_file, progress=gr.Progress()):
    """Main function to process PDF and generate summary"""
    try:
        if not api_key or not api_key.strip():
            return "❌ Please enter your Groq API key", "", ""
        
        if pdf_file is None:
            return "❌ Please upload a PDF file", "", ""
        
        progress(0.1, desc="Reading PDF file...")
        
        # Extract text from PDF
        text, error = extract_text_from_pdf(pdf_file)
        if error:
            return f"❌ {error}", "", ""
        
        progress(0.4, desc="Text extracted successfully...")
        
        # Show preview of extracted text
        text_preview = text[:500] + "..." if len(text) > 500 else text
        
        progress(0.6, desc="Generating summary with Groq AI...")
        
        # Generate summary
        summary = summarize_with_groq(api_key, text)
        
        progress(1.0, desc="Summary generated successfully!")
        
        return "βœ… Summary generated successfully!", text_preview, summary
    
    except Exception as e:
        error_traceback = traceback.format_exc()
        return f"❌ Unexpected error: {str(e)}\n\nTraceback:\n{error_traceback}", "", ""

def clear_all():
    """Clear all fields"""
    return "", None, "", "", ""

# Custom CSS for better styling
css = """
.gradio-container {
    max-width: 1200px !important;
    margin: auto !important;
}
.main-header {
    text-align: center;
    margin-bottom: 2rem;
}
.status-success {
    color: #28a745 !important;
}
.status-error {
    color: #dc3545 !important;
}
.info-box {
    background-color: #f8f9fa;
    padding: 1rem;
    border-radius: 0.5rem;
    border-left: 4px solid #007bff;
    margin: 1rem 0;
}
"""

# Create Gradio interface
with gr.Blocks(css=css, title="PDF Summarizer with Groq AI") as demo:
    # Header
    gr.HTML("""
    <div class="main-header">
        <h1>πŸ“„ PDF Summarizer with Groq AI</h1>
        <p>Upload any PDF document and get an AI-powered summary using Groq's Llama model</p>
    </div>
    """)
    
    # Info box
    gr.HTML("""
    <div class="info-box">
        <strong>πŸ”‘ How to get your Groq API Key:</strong><br>
        1. Visit <a href="https://console.groq.com/" target="_blank">console.groq.com</a><br>
        2. Sign up or log in to your account<br>
        3. Navigate to API Keys section<br>
        4. Create a new API key and copy it<br>
        5. Paste it in the field below
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            # Input section
            gr.Markdown("## πŸ”§ Configuration")
            api_key_input = gr.Textbox(
                label="Groq API Key",
                placeholder="Enter your Groq API key here...",
                type="password"
            )
            gr.Markdown("*Your API key is not stored and only used for this session*")
            
            pdf_file_input = gr.File(
                label="Upload PDF Document",
                file_types=[".pdf"]
            )
            gr.Markdown("*Upload any PDF file to summarize*")
            
            with gr.Row():
                summarize_btn = gr.Button("πŸ“‹ Generate Summary", variant="primary", size="lg")
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
        
        with gr.Column(scale=2):
            # Output section
            gr.Markdown("## πŸ“Š Results")
            status_output = gr.Textbox(
                label="Status",
                interactive=False,
                show_label=True
            )
            
            with gr.Tabs():
                with gr.TabItem("πŸ“ Summary"):
                    summary_output = gr.Textbox(
                        label="AI Generated Summary",
                        lines=15,
                        interactive=False,
                        placeholder="Your PDF summary will appear here..."
                    )
                
                with gr.TabItem("πŸ“„ Extracted Text Preview"):
                    text_preview_output = gr.Textbox(
                        label="Extracted Text (First 500 characters)",
                        lines=10,
                        interactive=False,
                        placeholder="Preview of extracted text will appear here..."
                    )
    
    # Usage instructions
    gr.HTML("""
    <div class="info-box">
        <strong>πŸ“‹ Usage Instructions:</strong><br>
        1. Enter your Groq API key in the field above<br>
        2. Upload a PDF document (any size, any content)<br>
        3. Click "Generate Summary" to process your document<br>
        4. View the AI-generated summary and extracted text preview<br>
        5. Use "Clear All" to reset all fields
    </div>
    """)
    
    # Model information
    gr.HTML("""
    <div style="margin-top: 2rem; padding: 1rem; background-color: #e9ecef; border-radius: 0.5rem;">
        <strong>πŸ€– Model Information:</strong><br>
        β€’ Model: Llama-3.3-70B-Versatile (via Groq)<br>
        β€’ Temperature: 0.3 (focused, factual summaries)<br>
        β€’ Max Tokens: 2048 (comprehensive summaries)<br>
        β€’ Top-p: 0.9 (balanced creativity and accuracy)
    </div>
    """)
    
    # Event handlers
    summarize_btn.click(
        fn=process_pdf_and_summarize,
        inputs=[api_key_input, pdf_file_input],
        outputs=[status_output, text_preview_output, summary_output],
        show_progress=True
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[api_key_input, pdf_file_input, status_output, text_preview_output, summary_output]
    )

# Launch the app
if __name__ == "__main__":
    print("πŸš€ Starting PDF Summarizer App...")
    print("πŸ“‹ Make sure you have the required packages installed:")
    print("   pip install gradio groq PyPDF2")
    print("\nπŸ”‘ Don't forget to get your Groq API key from: https://console.groq.com/")
    
    demo.launch(
        server_name="0.0.0.0",  # Allow external connections
        server_port=7860,       # Default port
        share=True,             # Create shareable link
        debug=True,             # Enable debug mode
        show_error=True         # Show detailed errors
    )