shukdevdatta123 commited on
Commit
5ef9384
Β·
verified Β·
1 Parent(s): 127c0e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import streamlit as st
2
  from llama_index.core import VectorStoreIndex, Document
3
  from llama_index.llms.openai import OpenAI
4
- from llama_index.core import Settings
5
  import os
6
  import pdfplumber
7
  from docx import Document as DocxDocument
@@ -18,8 +17,7 @@ if 'openai_api_key' not in st.session_state:
18
  st.session_state.openai_api_key = ""
19
 
20
  # Input for OpenAI API Key
21
- st.session_state.openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key:",
22
- type="password",
23
  value=st.session_state.openai_api_key)
24
 
25
  # Initialize session state for messages
@@ -46,8 +44,12 @@ def read_docx(file):
46
 
47
  @st.cache_resource(show_spinner=False)
48
  def load_data(uploaded_files):
 
 
 
 
 
49
  with st.spinner("Loading and indexing the documents – hang tight! This should take 1-2 minutes."):
50
- docs = []
51
  for uploaded_file in uploaded_files:
52
  if uploaded_file.type == "application/pdf":
53
  text = read_pdf(uploaded_file)
@@ -56,10 +58,7 @@ def load_data(uploaded_files):
56
  text = read_docx(uploaded_file)
57
  docs.append(Document(text=text))
58
 
59
- Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.5,
60
- system_prompt="You are an expert on the Streamlit Python library and your job is to answer technical questions. Assume that all questions are related to the Streamlit Python library. Keep your answers technical and based on facts – do not hallucinate features.")
61
-
62
- index = VectorStoreIndex.from_documents(docs, settings=Settings.llm)
63
  return index
64
 
65
  # Function to save the conversation
@@ -162,4 +161,4 @@ if st.session_state.show_conversations:
162
  else:
163
  st.sidebar.write("No previous conversations found.")
164
  else:
165
- st.sidebar.write("Previous conversations are hidden. Click 'Toggle Previous Conversations' to show.")
 
1
  import streamlit as st
2
  from llama_index.core import VectorStoreIndex, Document
3
  from llama_index.llms.openai import OpenAI
 
4
  import os
5
  import pdfplumber
6
  from docx import Document as DocxDocument
 
17
  st.session_state.openai_api_key = ""
18
 
19
  # Input for OpenAI API Key
20
+ st.session_state.openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key:", type="password",
 
21
  value=st.session_state.openai_api_key)
22
 
23
  # Initialize session state for messages
 
44
 
45
  @st.cache_resource(show_spinner=False)
46
  def load_data(uploaded_files):
47
+ # Create the LLM instance outside the cache
48
+ llm = OpenAI(model="gpt-3.5-turbo", temperature=0.5,
49
+ system_prompt="You are an expert on the Streamlit Python library and your job is to answer technical questions. Assume that all questions are related to the Streamlit Python library. Keep your answers technical and based on facts – do not hallucinate features.")
50
+
51
+ docs = []
52
  with st.spinner("Loading and indexing the documents – hang tight! This should take 1-2 minutes."):
 
53
  for uploaded_file in uploaded_files:
54
  if uploaded_file.type == "application/pdf":
55
  text = read_pdf(uploaded_file)
 
58
  text = read_docx(uploaded_file)
59
  docs.append(Document(text=text))
60
 
61
+ index = VectorStoreIndex.from_documents(docs, settings=llm)
 
 
 
62
  return index
63
 
64
  # Function to save the conversation
 
161
  else:
162
  st.sidebar.write("No previous conversations found.")
163
  else:
164
+ st.sidebar.write("Previous conversations are hidden. Click 'Toggle Previous Conversations' to show.")