shukdevdatta123's picture
Update app.py
252e084 verified
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from transformers import BertTokenizer, BertModel
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import IsolationForest
import gradio as gr
import warnings
warnings.filterwarnings('ignore')
class FraudDetectionTester:
def __init__(self, model_path='fraud_detection_model.pth'):
"""Initialize the fraud detection tester"""
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model_path = model_path
self.model = None
self.scaler = None
self.label_encoder = None
self.isolation_forest = None
# Load the model
self.load_model()
def create_bert_fraud_model(self, numerical_features_dim):
"""Recreate the BERT fraud detection model architecture"""
class BERTFraudDetector(nn.Module):
def __init__(self, bert_model_name, numerical_features_dim, dropout_rate=0.3):
super(BERTFraudDetector, self).__init__()
# BERT for text processing
self.bert = BertModel.from_pretrained(bert_model_name)
# Freeze BERT parameters for faster training (optional)
for param in self.bert.parameters():
param.requires_grad = False
# Unfreeze last few layers for fine-tuning
for param in self.bert.encoder.layer[-2:].parameters():
param.requires_grad = True
# Feature processing layers
self.text_projection = nn.Linear(self.bert.config.hidden_size, 256)
self.numerical_projection = nn.Linear(numerical_features_dim, 256)
# Anomaly detection features
self.anomaly_detector = nn.Sequential(
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
# Combined classifier
self.classifier = nn.Sequential(
nn.Linear(512 + 1, 256), # 256 + 256 + 1 (anomaly score)
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid()
)
def forward(self, input_ids, attention_mask, numerical_features):
# Process text with BERT
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)
text_features = self.text_projection(bert_output.pooler_output)
# Process numerical features
numerical_features = self.numerical_projection(numerical_features)
# Anomaly detection
anomaly_score = self.anomaly_detector(numerical_features)
# Combine all features
combined_features = torch.cat([text_features, numerical_features, anomaly_score], dim=1)
# Final classification
fraud_probability = self.classifier(combined_features)
return fraud_probability.squeeze(), anomaly_score.squeeze()
return BERTFraudDetector('bert-base-uncased', numerical_features_dim)
def load_model(self):
"""Load the pre-trained fraud detection model"""
try:
print(f"πŸ”„ Loading model from {self.model_path}...")
# Add safe globals for sklearn objects
torch.serialization.add_safe_globals([
StandardScaler,
LabelEncoder,
IsolationForest
])
checkpoint = torch.load(self.model_path, map_location=self.device, weights_only=False)
# Load preprocessing objects
self.scaler = checkpoint['scaler']
self.label_encoder = checkpoint['label_encoder']
self.isolation_forest = checkpoint['isolation_forest']
# Create and load model
numerical_features_dim = 14 # Same as training
self.model = self.create_bert_fraud_model(numerical_features_dim)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.to(self.device)
self.model.eval()
print("βœ… Model loaded successfully!")
except FileNotFoundError:
print(f"❌ Error: Model file '{self.model_path}' not found!")
print("Make sure you have trained and saved the model first.")
raise
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
raise
def tokenize_descriptions(self, descriptions, max_length=128):
"""Tokenize transaction descriptions for BERT"""
if hasattr(descriptions, 'tolist'):
descriptions = descriptions.tolist()
elif isinstance(descriptions, str):
descriptions = [descriptions]
elif not isinstance(descriptions, list):
descriptions = list(descriptions)
descriptions = [str(desc) for desc in descriptions]
encoded = self.tokenizer(
descriptions,
truncation=True,
padding=True,
max_length=max_length,
return_tensors='pt'
)
return encoded['input_ids'], encoded['attention_mask']
def preprocess_single_transaction(self, transaction):
"""Preprocess a single transaction for prediction"""
if isinstance(transaction, dict):
df = pd.DataFrame([transaction])
else:
df = pd.DataFrame(transaction)
# Feature engineering
df['amount_log'] = np.log1p(df['amount'])
df['is_weekend'] = (df['day_of_week'] >= 5).astype(int)
df['is_night'] = ((df['hour'] >= 22) | (df['hour'] <= 6)).astype(int)
df['high_frequency'] = (df['transaction_count_1h'] > 3).astype(int)
df['amount_deviation'] = abs(df['amount'] - df['avg_amount_1h']) / (df['avg_amount_1h'] + 1)
# Handle unknown categories
try:
df['merchant_category_encoded'] = self.label_encoder.transform(df['merchant_category'])
except ValueError:
df['merchant_category_encoded'] = 0
# Prepare numerical features
numerical_features = ['amount_log', 'hour', 'day_of_week', 'days_since_last_transaction',
'transaction_count_1h', 'transaction_count_24h', 'avg_amount_1h',
'location_risk_score', 'account_age_days', 'merchant_category_encoded',
'is_weekend', 'is_night', 'high_frequency', 'amount_deviation']
X_numerical = self.scaler.transform(df[numerical_features])
# Process text
df['processed_description'] = df['description'].astype(str).str.lower().str.replace(r'[^\w\s]', '', regex=True)
return df, X_numerical
def predict_fraud(self, transaction):
"""Predict fraud for a single transaction"""
try:
# Preprocess transaction
df, X_numerical = self.preprocess_single_transaction(transaction)
# Tokenize description
processed_descriptions = df['processed_description'].tolist()
input_ids, attention_masks = self.tokenize_descriptions(processed_descriptions)
# Make prediction
with torch.no_grad():
batch_num = torch.tensor(X_numerical).float().to(self.device)
batch_ids = input_ids.to(self.device)
batch_masks = attention_masks.to(self.device)
fraud_prob, anomaly_score = self.model(batch_ids, batch_masks, batch_num)
# Get isolation forest prediction
isolation_pred = self.isolation_forest.decision_function(X_numerical)
# Handle single prediction
if isinstance(fraud_prob, torch.Tensor):
if fraud_prob.dim() == 0:
fraud_prob_val = fraud_prob.item()
anomaly_score_val = anomaly_score.item()
else:
fraud_prob_val = fraud_prob[0].item()
anomaly_score_val = anomaly_score[0].item()
else:
fraud_prob_val = float(fraud_prob)
anomaly_score_val = float(anomaly_score)
# Combine predictions
combined_score = (0.6 * fraud_prob_val +
0.3 * (1 - (isolation_pred[0] + 0.5)) +
0.1 * anomaly_score_val)
return {
'fraud_probability': float(combined_score),
'is_fraud_predicted': bool(combined_score > 0.5),
'risk_level': self.get_risk_level(combined_score),
'anomaly_score': float(anomaly_score_val),
'bert_score': float(fraud_prob_val),
'isolation_score': float(isolation_pred[0])
}
except Exception as e:
return {'error': str(e)}
def get_risk_level(self, score):
"""Determine risk level based on fraud probability"""
if score > 0.8:
return 'CRITICAL'
elif score > 0.6:
return 'HIGH'
elif score > 0.4:
return 'MEDIUM'
elif score > 0.2:
return 'LOW'
else:
return 'MINIMAL'
# Initialize the fraud detection model
print("Initializing fraud detection model...")
try:
fraud_detector = FraudDetectionTester('fraud_detection_model.pth')
model_loaded = True
except Exception as e:
print(f"Failed to load model: {e}")
model_loaded = False
def predict_transaction_fraud(
transaction_id,
amount,
merchant_category,
description,
hour,
day_of_week,
days_since_last_transaction,
transaction_count_1h,
transaction_count_24h,
avg_amount_1h,
location_risk_score,
account_age_days
):
"""Gradio interface function for fraud prediction"""
if not model_loaded:
return "❌ Model not loaded. Please ensure 'fraud_detection_model.pth' is available.", "", "", "", "", ""
# Create transaction dictionary
transaction = {
'transaction_id': transaction_id,
'amount': amount,
'merchant_category': merchant_category,
'description': description,
'hour': hour,
'day_of_week': day_of_week,
'days_since_last_transaction': days_since_last_transaction,
'transaction_count_1h': transaction_count_1h,
'transaction_count_24h': transaction_count_24h,
'avg_amount_1h': avg_amount_1h,
'location_risk_score': location_risk_score,
'account_age_days': account_age_days
}
# Get prediction
result = fraud_detector.predict_fraud(transaction)
if 'error' in result:
return f"❌ Error: {result['error']}", "", "", "", "", ""
# Format results
fraud_prob = result['fraud_probability']
prediction = "🚨 FRAUD DETECTED" if result['is_fraud_predicted'] else "βœ… LEGITIMATE"
risk_level = result['risk_level']
# Create risk meter visualization
risk_bar = "β–ˆ" * int(fraud_prob * 20) + "β–‘" * (20 - int(fraud_prob * 20))
risk_meter = f"[{risk_bar}] {fraud_prob*100:.1f}%"
# Detailed scores
detailed_scores = f"""
πŸ€– BERT Score: {result['bert_score']:.4f}
🏝️ Isolation Score: {result['isolation_score']:.4f}
πŸ” Anomaly Score: {result['anomaly_score']:.4f}
"""
# Summary
summary = f"""
πŸ’° Amount: ${amount:.2f}
πŸͺ Category: {merchant_category}
πŸ“ Description: {description}
🎯 Fraud Probability: {fraud_prob:.4f} ({fraud_prob*100:.2f}%)
πŸ“Š Risk Level: {risk_level}
"""
return prediction, f"{fraud_prob:.4f}", risk_level, risk_meter, detailed_scores, summary
def load_sample_transaction(sample_type):
"""Load predefined sample transactions"""
samples = {
"Normal Grocery Purchase": {
'transaction_id': 'NORMAL_001',
'amount': 45.67,
'merchant_category': 'grocery',
'description': 'WALMART SUPERCENTER CA 1234',
'hour': 14,
'day_of_week': 2,
'days_since_last_transaction': 1.0,
'transaction_count_1h': 1,
'transaction_count_24h': 3,
'avg_amount_1h': 50.0,
'location_risk_score': 0.1,
'account_age_days': 730
},
"Suspicious High Amount": {
'transaction_id': 'SUSPICIOUS_001',
'amount': 2999.99,
'merchant_category': 'online',
'description': 'SUSPICIOUS ELECTRONICS STORE XX 9999',
'hour': 3,
'day_of_week': 6,
'days_since_last_transaction': 60.0,
'transaction_count_1h': 12,
'transaction_count_24h': 25,
'avg_amount_1h': 150.0,
'location_risk_score': 0.95,
'account_age_days': 15
},
"Coffee Shop Purchase": {
'transaction_id': 'COFFEE_001',
'amount': 8.50,
'merchant_category': 'restaurant',
'description': 'STARBUCKS COFFEE NY 5678',
'hour': 8,
'day_of_week': 1,
'days_since_last_transaction': 0.5,
'transaction_count_1h': 1,
'transaction_count_24h': 4,
'avg_amount_1h': 8.50,
'location_risk_score': 0.2,
'account_age_days': 1095
},
"Foreign ATM Withdrawal": {
'transaction_id': 'ATM_001',
'amount': 500.00,
'merchant_category': 'atm',
'description': 'ATM WITHDRAWAL FOREIGN COUNTRY 0000',
'hour': 23,
'day_of_week': 0,
'days_since_last_transaction': 0.1,
'transaction_count_1h': 5,
'transaction_count_24h': 8,
'avg_amount_1h': 200.0,
'location_risk_score': 0.8,
'account_age_days': 365
}
}
if sample_type in samples:
sample = samples[sample_type]
return (
sample['transaction_id'],
sample['amount'],
sample['merchant_category'],
sample['description'],
sample['hour'],
sample['day_of_week'],
sample['days_since_last_transaction'],
sample['transaction_count_1h'],
sample['transaction_count_24h'],
sample['avg_amount_1h'],
sample['location_risk_score'],
sample['account_age_days']
)
return [""] * 12
# Create Gradio interface
with gr.Blocks(title="🚨 Fraud Detection System", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🚨 Advanced Fraud Detection System
### Powered by BERT and Machine Learning
This system analyzes financial transactions using advanced AI to detect potential fraud.
Enter transaction details below or use sample transactions to test the system.
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## πŸ“‹ Transaction Details")
# Sample transaction selector
with gr.Row():
sample_dropdown = gr.Dropdown(
choices=["Normal Grocery Purchase", "Suspicious High Amount", "Coffee Shop Purchase", "Foreign ATM Withdrawal"],
label="🎯 Load Sample Transaction",
value="Normal Grocery Purchase"
)
load_sample_btn = gr.Button("πŸ“₯ Load Sample", variant="secondary")
# Transaction inputs
with gr.Row():
transaction_id = gr.Textbox(label="Transaction ID", value="TEST_001")
amount = gr.Number(label="πŸ’° Amount ($)", value=45.67, minimum=0)
with gr.Row():
merchant_category = gr.Dropdown(
choices=["grocery", "restaurant", "gas_station", "retail", "online", "atm", "pharmacy", "entertainment"],
label="πŸͺ Merchant Category",
value="grocery"
)
description = gr.Textbox(label="πŸ“ Transaction Description", value="WALMART SUPERCENTER CA 1234")
with gr.Row():
hour = gr.Slider(label="πŸ• Hour of Day", minimum=0, maximum=23, value=14, step=1)
day_of_week = gr.Slider(label="πŸ“… Day of Week (0=Mon, 6=Sun)", minimum=0, maximum=6, value=2, step=1)
with gr.Row():
days_since_last = gr.Number(label="πŸ“† Days Since Last Transaction", value=1.0, minimum=0)
transaction_count_1h = gr.Number(label="πŸ”’ Transactions (1h)", value=1, minimum=0)
with gr.Row():
transaction_count_24h = gr.Number(label="πŸ”’ Transactions (24h)", value=3, minimum=0)
avg_amount_1h = gr.Number(label="πŸ’΅ Avg Amount (1h)", value=50.0, minimum=0)
with gr.Row():
location_risk_score = gr.Slider(label="πŸ“ Location Risk Score", minimum=0, maximum=1, value=0.1, step=0.01)
account_age_days = gr.Number(label="πŸ‘€ Account Age (days)", value=730, minimum=0)
predict_btn = gr.Button("πŸ” Analyze Transaction", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("## πŸ“Š Fraud Analysis Results")
prediction_output = gr.Textbox(label="🎯 Prediction", interactive=False)
fraud_prob_output = gr.Textbox(label="πŸ“ˆ Fraud Probability", interactive=False)
risk_level_output = gr.Textbox(label="⚠️ Risk Level", interactive=False)
risk_meter_output = gr.Textbox(label="πŸ“Š Risk Meter", interactive=False)
detailed_scores_output = gr.Textbox(label="πŸ” Detailed Scores", interactive=False, lines=4)
summary_output = gr.Textbox(label="πŸ“‹ Summary", interactive=False, lines=6)
# Event handlers
predict_btn.click(
fn=predict_transaction_fraud,
inputs=[
transaction_id, amount, merchant_category, description, hour, day_of_week,
days_since_last, transaction_count_1h, transaction_count_24h, avg_amount_1h,
location_risk_score, account_age_days
],
outputs=[
prediction_output, fraud_prob_output, risk_level_output,
risk_meter_output, detailed_scores_output, summary_output
]
)
load_sample_btn.click(
fn=load_sample_transaction,
inputs=[sample_dropdown],
outputs=[
transaction_id, amount, merchant_category, description, hour, day_of_week,
days_since_last, transaction_count_1h, transaction_count_24h, avg_amount_1h,
location_risk_score, account_age_days
]
)
gr.Markdown("""
---
### πŸ“– How to Use:
1. **Load Sample**: Choose a predefined sample transaction to quickly test the system
2. **Enter Details**: Fill in transaction information manually or modify loaded samples
3. **Analyze**: Click "Analyze Transaction" to get fraud detection results
### 🎯 Understanding Results:
- **Fraud Probability**: Higher values indicate higher fraud risk (0-1 scale)
- **Risk Levels**: MINIMAL β†’ LOW β†’ MEDIUM β†’ HIGH β†’ CRITICAL
- **Risk Meter**: Visual representation of fraud probability
- **Detailed Scores**: Individual model component scores
### ⚠️ Model Requirements:
Ensure `fraud_detection_model.pth` is available in the same directory as this script.
""")
# Launch the interface
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)