Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import BertTokenizer, BertModel
|
6 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
7 |
+
from sklearn.ensemble import IsolationForest
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
+
|
11 |
+
class FraudDetectionTester:
|
12 |
+
def __init__(self, model_path='fraud_detection_model.pth'):
|
13 |
+
"""Initialize the fraud detection tester"""
|
14 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
+
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
16 |
+
self.model_path = model_path
|
17 |
+
self.model = None
|
18 |
+
self.scaler = None
|
19 |
+
self.label_encoder = None
|
20 |
+
self.isolation_forest = None
|
21 |
+
|
22 |
+
# Load the model
|
23 |
+
self.load_model()
|
24 |
+
|
25 |
+
def create_bert_fraud_model(self, numerical_features_dim):
|
26 |
+
"""Recreate the BERT fraud detection model architecture"""
|
27 |
+
|
28 |
+
class BERTFraudDetector(nn.Module):
|
29 |
+
def __init__(self, bert_model_name, numerical_features_dim, dropout_rate=0.3):
|
30 |
+
super(BERTFraudDetector, self).__init__()
|
31 |
+
|
32 |
+
# BERT for text processing
|
33 |
+
self.bert = BertModel.from_pretrained(bert_model_name)
|
34 |
+
|
35 |
+
# Freeze BERT parameters for faster training (optional)
|
36 |
+
for param in self.bert.parameters():
|
37 |
+
param.requires_grad = False
|
38 |
+
|
39 |
+
# Unfreeze last few layers for fine-tuning
|
40 |
+
for param in self.bert.encoder.layer[-2:].parameters():
|
41 |
+
param.requires_grad = True
|
42 |
+
|
43 |
+
# Feature processing layers
|
44 |
+
self.text_projection = nn.Linear(self.bert.config.hidden_size, 256)
|
45 |
+
self.numerical_projection = nn.Linear(numerical_features_dim, 256)
|
46 |
+
|
47 |
+
# Anomaly detection features
|
48 |
+
self.anomaly_detector = nn.Sequential(
|
49 |
+
nn.Linear(256, 128),
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Dropout(dropout_rate),
|
52 |
+
nn.Linear(128, 64),
|
53 |
+
nn.ReLU(),
|
54 |
+
nn.Linear(64, 1)
|
55 |
+
)
|
56 |
+
|
57 |
+
# Combined classifier
|
58 |
+
self.classifier = nn.Sequential(
|
59 |
+
nn.Linear(512 + 1, 256), # 256 + 256 + 1 (anomaly score)
|
60 |
+
nn.ReLU(),
|
61 |
+
nn.Dropout(dropout_rate),
|
62 |
+
nn.Linear(256, 128),
|
63 |
+
nn.ReLU(),
|
64 |
+
nn.Dropout(dropout_rate),
|
65 |
+
nn.Linear(128, 64),
|
66 |
+
nn.ReLU(),
|
67 |
+
nn.Linear(64, 1),
|
68 |
+
nn.Sigmoid()
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(self, input_ids, attention_mask, numerical_features):
|
72 |
+
# Process text with BERT
|
73 |
+
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
74 |
+
text_features = self.text_projection(bert_output.pooler_output)
|
75 |
+
|
76 |
+
# Process numerical features
|
77 |
+
numerical_features = self.numerical_projection(numerical_features)
|
78 |
+
|
79 |
+
# Anomaly detection
|
80 |
+
anomaly_score = self.anomaly_detector(numerical_features)
|
81 |
+
|
82 |
+
# Combine all features
|
83 |
+
combined_features = torch.cat([text_features, numerical_features, anomaly_score], dim=1)
|
84 |
+
|
85 |
+
# Final classification
|
86 |
+
fraud_probability = self.classifier(combined_features)
|
87 |
+
|
88 |
+
return fraud_probability.squeeze(), anomaly_score.squeeze()
|
89 |
+
|
90 |
+
return BERTFraudDetector('bert-base-uncased', numerical_features_dim)
|
91 |
+
|
92 |
+
def load_model(self):
|
93 |
+
"""Load the pre-trained fraud detection model"""
|
94 |
+
try:
|
95 |
+
print(f"π Loading model from {self.model_path}...")
|
96 |
+
|
97 |
+
# Add safe globals for sklearn objects
|
98 |
+
torch.serialization.add_safe_globals([
|
99 |
+
StandardScaler,
|
100 |
+
LabelEncoder,
|
101 |
+
IsolationForest
|
102 |
+
])
|
103 |
+
|
104 |
+
# Load with weights_only=False for backward compatibility
|
105 |
+
# This is safe if you trust the source of the model file
|
106 |
+
checkpoint = torch.load(self.model_path, map_location=self.device, weights_only=False)
|
107 |
+
|
108 |
+
# Load preprocessing objects
|
109 |
+
self.scaler = checkpoint['scaler']
|
110 |
+
self.label_encoder = checkpoint['label_encoder']
|
111 |
+
self.isolation_forest = checkpoint['isolation_forest']
|
112 |
+
|
113 |
+
# Create and load model
|
114 |
+
numerical_features_dim = 14 # Same as training
|
115 |
+
self.model = self.create_bert_fraud_model(numerical_features_dim)
|
116 |
+
self.model.load_state_dict(checkpoint['model_state_dict'])
|
117 |
+
self.model.to(self.device)
|
118 |
+
self.model.eval()
|
119 |
+
|
120 |
+
print("β
Model loaded successfully!")
|
121 |
+
|
122 |
+
except FileNotFoundError:
|
123 |
+
print(f"β Error: Model file '{self.model_path}' not found!")
|
124 |
+
print("Make sure you have trained and saved the model first.")
|
125 |
+
raise
|
126 |
+
except Exception as e:
|
127 |
+
print(f"β Error loading model: {str(e)}")
|
128 |
+
print("If you're still getting errors, try updating PyTorch or ensure the model file is from a trusted source.")
|
129 |
+
raise
|
130 |
+
|
131 |
+
def tokenize_descriptions(self, descriptions, max_length=128):
|
132 |
+
"""Tokenize transaction descriptions for BERT"""
|
133 |
+
# Convert pandas Series to list if needed
|
134 |
+
if hasattr(descriptions, 'tolist'):
|
135 |
+
descriptions = descriptions.tolist()
|
136 |
+
elif isinstance(descriptions, str):
|
137 |
+
descriptions = [descriptions]
|
138 |
+
elif not isinstance(descriptions, list):
|
139 |
+
descriptions = list(descriptions)
|
140 |
+
|
141 |
+
# Ensure all descriptions are strings
|
142 |
+
descriptions = [str(desc) for desc in descriptions]
|
143 |
+
|
144 |
+
encoded = self.tokenizer(
|
145 |
+
descriptions,
|
146 |
+
truncation=True,
|
147 |
+
padding=True,
|
148 |
+
max_length=max_length,
|
149 |
+
return_tensors='pt'
|
150 |
+
)
|
151 |
+
|
152 |
+
return encoded['input_ids'], encoded['attention_mask']
|
153 |
+
|
154 |
+
def preprocess_single_transaction(self, transaction):
|
155 |
+
"""Preprocess a single transaction for prediction"""
|
156 |
+
# Create DataFrame from transaction
|
157 |
+
if isinstance(transaction, dict):
|
158 |
+
df = pd.DataFrame([transaction])
|
159 |
+
else:
|
160 |
+
df = pd.DataFrame(transaction)
|
161 |
+
|
162 |
+
# Feature engineering (same as training)
|
163 |
+
df['amount_log'] = np.log1p(df['amount'])
|
164 |
+
df['is_weekend'] = (df['day_of_week'] >= 5).astype(int)
|
165 |
+
df['is_night'] = ((df['hour'] >= 22) | (df['hour'] <= 6)).astype(int)
|
166 |
+
df['high_frequency'] = (df['transaction_count_1h'] > 3).astype(int)
|
167 |
+
df['amount_deviation'] = abs(df['amount'] - df['avg_amount_1h']) / (df['avg_amount_1h'] + 1)
|
168 |
+
|
169 |
+
# Handle unknown categories for merchant_category
|
170 |
+
try:
|
171 |
+
df['merchant_category_encoded'] = self.label_encoder.transform(df['merchant_category'])
|
172 |
+
except ValueError as e:
|
173 |
+
print(f"β οΈ Warning: Unknown merchant category '{df['merchant_category'].iloc[0]}'. Using default value.")
|
174 |
+
# Use the first category as default or assign a default encoded value
|
175 |
+
df['merchant_category_encoded'] = 0
|
176 |
+
|
177 |
+
# Prepare numerical features
|
178 |
+
numerical_features = ['amount_log', 'hour', 'day_of_week', 'days_since_last_transaction',
|
179 |
+
'transaction_count_1h', 'transaction_count_24h', 'avg_amount_1h',
|
180 |
+
'location_risk_score', 'account_age_days', 'merchant_category_encoded',
|
181 |
+
'is_weekend', 'is_night', 'high_frequency', 'amount_deviation']
|
182 |
+
|
183 |
+
X_numerical = self.scaler.transform(df[numerical_features])
|
184 |
+
|
185 |
+
# Process text - ensure it's a string
|
186 |
+
df['processed_description'] = df['description'].astype(str).str.lower().str.replace(r'[^\w\s]', '', regex=True)
|
187 |
+
|
188 |
+
return df, X_numerical
|
189 |
+
|
190 |
+
def predict_fraud(self, transactions):
|
191 |
+
"""Predict fraud for one or more transactions"""
|
192 |
+
print("π Analyzing transactions for fraud...")
|
193 |
+
|
194 |
+
# Handle single transaction
|
195 |
+
if isinstance(transactions, dict):
|
196 |
+
transactions = [transactions]
|
197 |
+
|
198 |
+
results = []
|
199 |
+
|
200 |
+
for i, transaction in enumerate(transactions):
|
201 |
+
try:
|
202 |
+
# Preprocess transaction
|
203 |
+
df, X_numerical = self.preprocess_single_transaction(transaction)
|
204 |
+
|
205 |
+
# Tokenize description - extract the actual string values
|
206 |
+
processed_descriptions = df['processed_description'].tolist()
|
207 |
+
input_ids, attention_masks = self.tokenize_descriptions(processed_descriptions)
|
208 |
+
|
209 |
+
# Make prediction
|
210 |
+
with torch.no_grad():
|
211 |
+
batch_num = torch.tensor(X_numerical).float().to(self.device)
|
212 |
+
batch_ids = input_ids.to(self.device)
|
213 |
+
batch_masks = attention_masks.to(self.device)
|
214 |
+
|
215 |
+
fraud_prob, anomaly_score = self.model(batch_ids, batch_masks, batch_num)
|
216 |
+
|
217 |
+
# Get isolation forest prediction
|
218 |
+
isolation_pred = self.isolation_forest.decision_function(X_numerical)
|
219 |
+
|
220 |
+
# Handle single prediction vs batch
|
221 |
+
if isinstance(fraud_prob, torch.Tensor):
|
222 |
+
if fraud_prob.dim() == 0: # Single prediction
|
223 |
+
fraud_prob_val = fraud_prob.item()
|
224 |
+
anomaly_score_val = anomaly_score.item()
|
225 |
+
else: # Batch prediction
|
226 |
+
fraud_prob_val = fraud_prob[0].item()
|
227 |
+
anomaly_score_val = anomaly_score[0].item()
|
228 |
+
else:
|
229 |
+
fraud_prob_val = float(fraud_prob)
|
230 |
+
anomaly_score_val = float(anomaly_score)
|
231 |
+
|
232 |
+
# Combine predictions (ensemble approach)
|
233 |
+
combined_score = (0.6 * fraud_prob_val +
|
234 |
+
0.3 * (1 - (isolation_pred[0] + 0.5)) +
|
235 |
+
0.1 * anomaly_score_val)
|
236 |
+
|
237 |
+
# Create result
|
238 |
+
result = {
|
239 |
+
'transaction_id': transaction.get('transaction_id', f'test_{i+1}'),
|
240 |
+
'amount': transaction['amount'],
|
241 |
+
'description': transaction['description'],
|
242 |
+
'fraud_probability': float(combined_score),
|
243 |
+
'is_fraud_predicted': bool(combined_score > 0.5),
|
244 |
+
'risk_level': self.get_risk_level(combined_score),
|
245 |
+
'anomaly_score': float(anomaly_score_val),
|
246 |
+
'bert_score': float(fraud_prob_val),
|
247 |
+
'isolation_score': float(isolation_pred[0])
|
248 |
+
}
|
249 |
+
|
250 |
+
results.append(result)
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
print(f"β Error processing transaction {i+1}: {str(e)}")
|
254 |
+
import traceback
|
255 |
+
traceback.print_exc() # Print full error traceback for debugging
|
256 |
+
results.append({
|
257 |
+
'transaction_id': transaction.get('transaction_id', f'test_{i+1}'),
|
258 |
+
'error': str(e)
|
259 |
+
})
|
260 |
+
|
261 |
+
return results
|
262 |
+
|
263 |
+
def get_risk_level(self, score):
|
264 |
+
"""Determine risk level based on fraud probability"""
|
265 |
+
if score > 0.8:
|
266 |
+
return 'CRITICAL'
|
267 |
+
elif score > 0.6:
|
268 |
+
return 'HIGH'
|
269 |
+
elif score > 0.4:
|
270 |
+
return 'MEDIUM'
|
271 |
+
elif score > 0.2:
|
272 |
+
return 'LOW'
|
273 |
+
else:
|
274 |
+
return 'MINIMAL'
|
275 |
+
|
276 |
+
def display_results(self, results):
|
277 |
+
"""Display prediction results in a nice format"""
|
278 |
+
print("\n" + "="*80)
|
279 |
+
print("π¨ FRAUD DETECTION RESULTS")
|
280 |
+
print("="*80)
|
281 |
+
|
282 |
+
for i, result in enumerate(results):
|
283 |
+
if 'error' in result:
|
284 |
+
print(f"\nβ Transaction {i+1}: ERROR - {result['error']}")
|
285 |
+
continue
|
286 |
+
|
287 |
+
print(f"\nπ Transaction {i+1}:")
|
288 |
+
print(f" ID: {result['transaction_id']}")
|
289 |
+
print(f" Amount: ${result['amount']:.2f}")
|
290 |
+
print(f" Description: {result['description']}")
|
291 |
+
print(f" π― Fraud Probability: {result['fraud_probability']:.4f} ({result['fraud_probability']*100:.2f}%)")
|
292 |
+
|
293 |
+
# Color-coded prediction
|
294 |
+
if result['is_fraud_predicted']:
|
295 |
+
print(f" π¨ Prediction: FRAUD DETECTED")
|
296 |
+
else:
|
297 |
+
print(f" β
Prediction: LEGITIMATE")
|
298 |
+
|
299 |
+
print(f" π Risk Level: {result['risk_level']}")
|
300 |
+
print(f" π Anomaly Score: {result['anomaly_score']:.4f}")
|
301 |
+
print(f" π€ BERT Score: {result['bert_score']:.4f}")
|
302 |
+
print(f" ποΈ Isolation Score: {result['isolation_score']:.4f}")
|
303 |
+
|
304 |
+
# Risk indicator
|
305 |
+
risk_bar = "β" * int(result['fraud_probability'] * 20)
|
306 |
+
print(f" π Risk Meter: [{risk_bar:<20}] {result['fraud_probability']*100:.1f}%")
|
307 |
+
|
308 |
+
print("\n" + "="*80)
|
309 |
+
|
310 |
+
def create_sample_transactions():
|
311 |
+
"""Create sample transactions for testing"""
|
312 |
+
return [
|
313 |
+
{
|
314 |
+
'transaction_id': 'TEST_001',
|
315 |
+
'amount': 45.67,
|
316 |
+
'merchant_category': 'grocery',
|
317 |
+
'description': 'WALMART SUPERCENTER CA 1234',
|
318 |
+
'hour': 14,
|
319 |
+
'day_of_week': 2,
|
320 |
+
'days_since_last_transaction': 1.0,
|
321 |
+
'transaction_count_1h': 1,
|
322 |
+
'transaction_count_24h': 3,
|
323 |
+
'avg_amount_1h': 50.0,
|
324 |
+
'location_risk_score': 0.1,
|
325 |
+
'account_age_days': 730
|
326 |
+
},
|
327 |
+
{
|
328 |
+
'transaction_id': 'TEST_002',
|
329 |
+
'amount': 2999.99,
|
330 |
+
'merchant_category': 'online',
|
331 |
+
'description': 'SUSPICIOUS ELECTRONICS STORE XX 9999',
|
332 |
+
'hour': 3,
|
333 |
+
'day_of_week': 6,
|
334 |
+
'days_since_last_transaction': 60.0,
|
335 |
+
'transaction_count_1h': 12,
|
336 |
+
'transaction_count_24h': 25,
|
337 |
+
'avg_amount_1h': 150.0,
|
338 |
+
'location_risk_score': 0.95,
|
339 |
+
'account_age_days': 15
|
340 |
+
},
|
341 |
+
{
|
342 |
+
'transaction_id': 'TEST_003',
|
343 |
+
'amount': 89.50,
|
344 |
+
'merchant_category': 'restaurant',
|
345 |
+
'description': 'STARBUCKS COFFEE NY 5678',
|
346 |
+
'hour': 8,
|
347 |
+
'day_of_week': 1,
|
348 |
+
'days_since_last_transaction': 0.5,
|
349 |
+
'transaction_count_1h': 1,
|
350 |
+
'transaction_count_24h': 4,
|
351 |
+
'avg_amount_1h': 85.0,
|
352 |
+
'location_risk_score': 0.2,
|
353 |
+
'account_age_days': 1095
|
354 |
+
},
|
355 |
+
{
|
356 |
+
'transaction_id': 'TEST_004',
|
357 |
+
'amount': 500.00,
|
358 |
+
'merchant_category': 'atm',
|
359 |
+
'description': 'ATM WITHDRAWAL FOREIGN COUNTRY 0000',
|
360 |
+
'hour': 23,
|
361 |
+
'day_of_week': 0,
|
362 |
+
'days_since_last_transaction': 0.1,
|
363 |
+
'transaction_count_1h': 5,
|
364 |
+
'transaction_count_24h': 8,
|
365 |
+
'avg_amount_1h': 200.0,
|
366 |
+
'location_risk_score': 0.8,
|
367 |
+
'account_age_days': 365
|
368 |
+
}
|
369 |
+
]
|
370 |
+
|
371 |
+
def create_custom_transaction():
|
372 |
+
"""Interactive function to create custom transaction"""
|
373 |
+
print("\nπ οΈ CREATE CUSTOM TRANSACTION")
|
374 |
+
print("-" * 40)
|
375 |
+
|
376 |
+
transaction = {}
|
377 |
+
|
378 |
+
try:
|
379 |
+
transaction['transaction_id'] = input("Transaction ID (optional): ") or 'CUSTOM_001'
|
380 |
+
transaction['amount'] = float(input("Amount ($): "))
|
381 |
+
|
382 |
+
print("Merchant categories: grocery, gas_station, restaurant, online, retail, atm")
|
383 |
+
transaction['merchant_category'] = input("Merchant category: ") or 'online'
|
384 |
+
|
385 |
+
transaction['description'] = input("Transaction description: ") or 'Unknown merchant'
|
386 |
+
transaction['hour'] = int(input("Hour (0-23): "))
|
387 |
+
transaction['day_of_week'] = int(input("Day of week (0=Monday, 6=Sunday): "))
|
388 |
+
transaction['days_since_last_transaction'] = float(input("Days since last transaction: "))
|
389 |
+
transaction['transaction_count_1h'] = int(input("Transactions in last hour: "))
|
390 |
+
transaction['transaction_count_24h'] = int(input("Transactions in last 24 hours: "))
|
391 |
+
transaction['avg_amount_1h'] = float(input("Average amount in last hour ($): "))
|
392 |
+
transaction['location_risk_score'] = float(input("Location risk score (0-1): "))
|
393 |
+
transaction['account_age_days'] = float(input("Account age in days: "))
|
394 |
+
|
395 |
+
return transaction
|
396 |
+
|
397 |
+
except ValueError as e:
|
398 |
+
print(f"β Invalid input: {e}")
|
399 |
+
return None
|
400 |
+
|
401 |
+
def main():
|
402 |
+
"""Main testing function"""
|
403 |
+
print("π FRAUD DETECTION MODEL TESTER")
|
404 |
+
print("="*50)
|
405 |
+
|
406 |
+
# Initialize tester
|
407 |
+
try:
|
408 |
+
tester = FraudDetectionTester('fraud_detection_model.pth')
|
409 |
+
except:
|
410 |
+
print("Make sure you have the trained model file 'fraud_detection_model.pth' in the same directory!")
|
411 |
+
return
|
412 |
+
|
413 |
+
while True:
|
414 |
+
print("\nπ TESTING OPTIONS:")
|
415 |
+
print("1. Test with sample transactions")
|
416 |
+
print("2. Create custom transaction")
|
417 |
+
print("3. Test single transaction")
|
418 |
+
print("4. Exit")
|
419 |
+
|
420 |
+
choice = input("\nEnter your choice (1-4): ").strip()
|
421 |
+
|
422 |
+
if choice == '1':
|
423 |
+
# Test with sample transactions
|
424 |
+
sample_transactions = create_sample_transactions()
|
425 |
+
results = tester.predict_fraud(sample_transactions)
|
426 |
+
tester.display_results(results)
|
427 |
+
|
428 |
+
elif choice == '2':
|
429 |
+
# Create custom transaction
|
430 |
+
custom_transaction = create_custom_transaction()
|
431 |
+
if custom_transaction:
|
432 |
+
results = tester.predict_fraud([custom_transaction])
|
433 |
+
tester.display_results(results)
|
434 |
+
|
435 |
+
elif choice == '3':
|
436 |
+
# Quick single transaction test
|
437 |
+
print("\nβ‘ QUICK TRANSACTION TEST")
|
438 |
+
print("-" * 30)
|
439 |
+
|
440 |
+
try:
|
441 |
+
quick_transaction = {
|
442 |
+
'transaction_id': 'QUICK_TEST',
|
443 |
+
'amount': float(input("Amount ($): ")),
|
444 |
+
'merchant_category': 'online',
|
445 |
+
'description': input("Description: ") or 'Unknown transaction',
|
446 |
+
'hour': int(input("Hour (0-23): ")),
|
447 |
+
'day_of_week': 2,
|
448 |
+
'days_since_last_transaction': 1.0,
|
449 |
+
'transaction_count_1h': int(input("Transactions in last hour: ")),
|
450 |
+
'transaction_count_24h': 5,
|
451 |
+
'avg_amount_1h': 100.0,
|
452 |
+
'location_risk_score': float(input("Risk score (0-1): ")),
|
453 |
+
'account_age_days': 365
|
454 |
+
}
|
455 |
+
|
456 |
+
results = tester.predict_fraud([quick_transaction])
|
457 |
+
tester.display_results(results)
|
458 |
+
|
459 |
+
except ValueError as e:
|
460 |
+
print(f"β Invalid input: {e}")
|
461 |
+
|
462 |
+
elif choice == '4':
|
463 |
+
print("π Goodbye!")
|
464 |
+
break
|
465 |
+
|
466 |
+
else:
|
467 |
+
print("β Invalid choice! Please enter 1-4.")
|
468 |
+
|
469 |
+
if __name__ == "__main__":
|
470 |
+
main()
|