Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from openai import OpenAI
|
4 |
import json
|
5 |
import requests
|
@@ -25,6 +26,8 @@ found on nature trails. For any image sent, please:
|
|
25 |
5. Offer suggestions for what to observe or learn about next on the trail
|
26 |
|
27 |
Keep explanations informative yet accessible to people of all ages and backgrounds.
|
|
|
|
|
28 |
"""
|
29 |
|
30 |
def encode_image_to_base64(image_path):
|
@@ -32,14 +35,60 @@ def encode_image_to_base64(image_path):
|
|
32 |
with open(image_path, "rb") as image_file:
|
33 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def analyze_image(api_key, image, prompt="What can you identify in this nature trail image? Provide detailed educational information.", site_url=DEFAULT_SITE_URL, site_name=DEFAULT_SITE_NAME, model=DEFAULT_MODEL):
|
36 |
"""Analyze the uploaded image using the InternVL3 model via OpenRouter"""
|
37 |
# Remove the placeholder text check
|
38 |
if not api_key:
|
39 |
-
return "Please provide an OpenRouter API key
|
40 |
|
41 |
if image is None:
|
42 |
-
return "Please upload an image to analyze
|
43 |
|
44 |
# Save the image temporarily
|
45 |
temp_image_path = "temp_image.jpg"
|
@@ -83,10 +132,11 @@ def analyze_image(api_key, image, prompt="What can you identify in this nature t
|
|
83 |
)
|
84 |
|
85 |
analysis_result = response.choices[0].message.content
|
86 |
-
return analysis_result
|
87 |
|
88 |
except Exception as e:
|
89 |
-
|
|
|
90 |
|
91 |
finally:
|
92 |
# Clean up the temporary file
|
@@ -119,7 +169,7 @@ def build_custom_prompt(identification=True, education=True, seasonal=True, cons
|
|
119 |
return "What can you identify in this nature trail image?"
|
120 |
|
121 |
numbered_prompt = "\n".join([f"{i+1}. {part}" for i, part in enumerate(prompt_parts)])
|
122 |
-
return f"For this nature trail image, please: \n{numbered_prompt}"
|
123 |
|
124 |
def create_interface():
|
125 |
"""Create the Gradio interface for the Dynamic Nature Trail Guide"""
|
@@ -167,7 +217,7 @@ def create_interface():
|
|
167 |
analyze_button = gr.Button("Analyze Nature Image", variant="primary")
|
168 |
|
169 |
with gr.Column(scale=1):
|
170 |
-
output_text = gr.
|
171 |
|
172 |
# Set up the click event for the analyze button
|
173 |
analyze_button.click(
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import re
|
4 |
from openai import OpenAI
|
5 |
import json
|
6 |
import requests
|
|
|
26 |
5. Offer suggestions for what to observe or learn about next on the trail
|
27 |
|
28 |
Keep explanations informative yet accessible to people of all ages and backgrounds.
|
29 |
+
|
30 |
+
IMPORTANT: Structure your responses with clear sections and headings.
|
31 |
"""
|
32 |
|
33 |
def encode_image_to_base64(image_path):
|
|
|
35 |
with open(image_path, "rb") as image_file:
|
36 |
return base64.b64encode(image_file.read()).decode('utf-8')
|
37 |
|
38 |
+
def format_response_as_html(text):
|
39 |
+
"""Convert the model's text response to formatted HTML"""
|
40 |
+
if not text:
|
41 |
+
return ""
|
42 |
+
|
43 |
+
# Check if the response is an error message
|
44 |
+
if text.startswith("Error analyzing image:"):
|
45 |
+
return f'<div style="color: red; padding: 10px; border: 1px solid red; border-radius: 5px;">{text}</div>'
|
46 |
+
|
47 |
+
# Replace newlines with HTML breaks
|
48 |
+
text = text.replace('\n\n', '</p><p>').replace('\n', '<br>')
|
49 |
+
|
50 |
+
# Handle headings - look for patterns like "1. Identification:" or "Species Identified:"
|
51 |
+
heading_patterns = [
|
52 |
+
(r'([A-Za-z\s]+):(?=<br>|</p>)', r'<h3>\1</h3>'), # "Category:" at start of line
|
53 |
+
(r'(\d+\.\s+[A-Za-z\s]+):(?=<br>|</p>)', r'<h3>\1</h3>'), # "1. Category:" format
|
54 |
+
]
|
55 |
+
|
56 |
+
for pattern, replacement in heading_patterns:
|
57 |
+
text = re.sub(pattern, replacement, text)
|
58 |
+
|
59 |
+
# Enhance species names with bold
|
60 |
+
text = re.sub(r'\b([A-Z][a-z]+\s+[a-z]+)\b(?!\<\/)', r'<strong>\1</strong>', text)
|
61 |
+
|
62 |
+
# Add some color to certain keywords
|
63 |
+
color_mappings = {
|
64 |
+
'endangered': 'red',
|
65 |
+
'rare': '#FF6600',
|
66 |
+
'native': '#006600',
|
67 |
+
'invasive': '#CC0000',
|
68 |
+
'ecosystem': '#006699',
|
69 |
+
'habitat': '#336699',
|
70 |
+
}
|
71 |
+
|
72 |
+
for keyword, color in color_mappings.items():
|
73 |
+
text = re.sub(r'\b' + keyword + r'\b', f'<span style="color: {color};">{keyword}</span>', text, flags=re.IGNORECASE)
|
74 |
+
|
75 |
+
# Wrap the entire content in a styled div
|
76 |
+
html = f'''
|
77 |
+
<div style="padding: 15px; font-family: Arial, sans-serif; line-height: 1.6;">
|
78 |
+
<p>{text}</p>
|
79 |
+
</div>
|
80 |
+
'''
|
81 |
+
|
82 |
+
return html
|
83 |
+
|
84 |
def analyze_image(api_key, image, prompt="What can you identify in this nature trail image? Provide detailed educational information.", site_url=DEFAULT_SITE_URL, site_name=DEFAULT_SITE_NAME, model=DEFAULT_MODEL):
|
85 |
"""Analyze the uploaded image using the InternVL3 model via OpenRouter"""
|
86 |
# Remove the placeholder text check
|
87 |
if not api_key:
|
88 |
+
return "<div style='color: red; padding: 10px; border: 1px solid red; border-radius: 5px;'>Please provide an OpenRouter API key.</div>"
|
89 |
|
90 |
if image is None:
|
91 |
+
return "<div style='color: red; padding: 10px; border: 1px solid red; border-radius: 5px;'>Please upload an image to analyze.</div>"
|
92 |
|
93 |
# Save the image temporarily
|
94 |
temp_image_path = "temp_image.jpg"
|
|
|
132 |
)
|
133 |
|
134 |
analysis_result = response.choices[0].message.content
|
135 |
+
return format_response_as_html(analysis_result)
|
136 |
|
137 |
except Exception as e:
|
138 |
+
error_message = f"Error analyzing image: {str(e)}"
|
139 |
+
return f'<div style="color: red; padding: 10px; border: 1px solid red; border-radius: 5px;">{error_message}</div>'
|
140 |
|
141 |
finally:
|
142 |
# Clean up the temporary file
|
|
|
169 |
return "What can you identify in this nature trail image?"
|
170 |
|
171 |
numbered_prompt = "\n".join([f"{i+1}. {part}" for i, part in enumerate(prompt_parts)])
|
172 |
+
return f"For this nature trail image, please: \n{numbered_prompt}\n\nIMPORTANT: Structure your response with clear sections and headings for better readability."
|
173 |
|
174 |
def create_interface():
|
175 |
"""Create the Gradio interface for the Dynamic Nature Trail Guide"""
|
|
|
217 |
analyze_button = gr.Button("Analyze Nature Image", variant="primary")
|
218 |
|
219 |
with gr.Column(scale=1):
|
220 |
+
output_text = gr.HTML(label="Analysis Results")
|
221 |
|
222 |
# Set up the click event for the analyze button
|
223 |
analyze_button.click(
|