Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import re | |
from groq import Groq | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import io | |
import base64 | |
from datetime import datetime, timedelta | |
import json | |
import numpy as np | |
from statsmodels.tsa.arima.model import ARIMA | |
from sklearn.linear_model import LinearRegression | |
import calendar | |
import matplotlib.dates as mdates | |
# Set the style for better looking charts | |
plt.style.use('ggplot') | |
sns.set_palette("pastel") | |
def validate_api_key(api_key): | |
"""Validate if the API key has the correct format.""" | |
# Basic format check for Groq API keys (they typically start with 'gsk_') | |
if not api_key.strip(): | |
return False, "API key cannot be empty" | |
if not api_key.startswith("gsk_"): | |
return False, "Invalid API key format. Groq API keys typically start with 'gsk_'" | |
return True, "API key looks valid" | |
def test_api_connection(api_key): | |
"""Test the API connection with a minimal request.""" | |
try: | |
client = Groq(api_key=api_key) | |
# Making a minimal API call to test the connection | |
client.chat.completions.create( | |
model="llama3-70b-8192", | |
messages=[{"role": "user", "content": "test"}], | |
max_tokens=5 | |
) | |
return True, "API connection successful" | |
except Exception as e: | |
# Handle all exceptions since Groq might not expose specific error types | |
if "authentication" in str(e).lower() or "api key" in str(e).lower(): | |
return False, "Authentication failed: Invalid API key" | |
else: | |
return False, f"Error connecting to Groq API: {str(e)}" | |
# Ensure analytics directory exists | |
os.makedirs("analytics", exist_ok=True) | |
def log_chat_interaction(model, tokens_used, response_time, user_message_length, message_type, session_id=None): | |
"""Enhanced log chat interactions for analytics""" | |
timestamp = datetime.now().isoformat() | |
# Generate a session ID if none is provided | |
if session_id is None: | |
session_id = f"session_{datetime.now().strftime('%Y%m%d%H%M%S')}_{hash(timestamp) % 1000}" | |
log_file = "analytics/chat_log.json" | |
# Extract message intent/category through simple keyword matching | |
intent_categories = { | |
"code": ["code", "programming", "function", "class", "algorithm", "debug"], | |
"creative": ["story", "poem", "creative", "imagine", "write", "generate"], | |
"technical": ["explain", "how does", "technical", "details", "documentation"], | |
"data": ["data", "analysis", "statistics", "graph", "chart", "dataset"], | |
"general": [] # Default category | |
} | |
message_content = user_message_length.lower() if isinstance(user_message_length, str) else "" | |
message_intent = "general" | |
for intent, keywords in intent_categories.items(): | |
if any(keyword in message_content for keyword in keywords): | |
message_intent = intent | |
break | |
log_entry = { | |
"timestamp": timestamp, | |
"model": model, | |
"tokens_used": tokens_used, | |
"response_time_sec": response_time, | |
"message_length": len(message_content) if isinstance(message_content, str) else user_message_length, | |
"message_type": message_type, | |
"message_intent": message_intent, | |
"session_id": session_id, | |
"day_of_week": datetime.now().strftime("%A"), | |
"hour_of_day": datetime.now().hour | |
} | |
# Append to existing log or create new file | |
if os.path.exists(log_file): | |
try: | |
with open(log_file, "r") as f: | |
logs = json.load(f) | |
except: | |
logs = [] | |
else: | |
logs = [] | |
logs.append(log_entry) | |
with open(log_file, "w") as f: | |
json.dump(logs, f, indent=2) | |
return session_id | |
def get_template_prompt(template_name): | |
"""Get system prompt for a given template name""" | |
templates = { | |
"General Assistant": "You are a helpful, harmless, and honest AI assistant.", | |
"Code Helper": "You are a programming assistant. Provide detailed code explanations and examples.", | |
"Creative Writer": "You are a creative writing assistant. Generate engaging and imaginative content.", | |
"Technical Expert": "You are a technical expert. Provide accurate, detailed technical information.", | |
"Data Analyst": "You are a data analysis assistant. Help interpret and analyze data effectively." | |
} | |
return templates.get(template_name, "") | |
def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name="", session_id=None): | |
"""Enhanced chat function with analytics logging""" | |
start_time = datetime.now() | |
# Get system prompt if template is provided | |
system_prompt = get_template_prompt(template_name) if template_name else "" | |
# Validate and process as before | |
is_valid, message = validate_api_key(api_key) | |
if not is_valid: | |
return chat_history + [[user_message, f"Error: {message}"]], session_id | |
connection_valid, connection_message = test_api_connection(api_key) | |
if not connection_valid: | |
return chat_history + [[user_message, f"Error: {connection_message}"]], session_id | |
try: | |
# Format history | |
messages = [] | |
if system_prompt: | |
messages.append({"role": "system", "content": system_prompt}) | |
for human, assistant in chat_history: | |
messages.append({"role": "user", "content": human}) | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": user_message}) | |
# Make API call | |
client = Groq(api_key=api_key) | |
response = client.chat.completions.create( | |
model=model, | |
messages=messages, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
top_p=top_p | |
) | |
# Calculate metrics | |
end_time = datetime.now() | |
response_time = (end_time - start_time).total_seconds() | |
tokens_used = response.usage.total_tokens | |
# Determine message type based on template or content | |
message_type = template_name if template_name else "general" | |
# Log the interaction | |
session_id = log_chat_interaction( | |
model=model, | |
tokens_used=tokens_used, | |
response_time=response_time, | |
user_message_length=user_message, | |
message_type=message_type, | |
session_id=session_id | |
) | |
# Extract response | |
assistant_response = response.choices[0].message.content | |
return chat_history + [[user_message, assistant_response]], session_id | |
except Exception as e: | |
error_message = f"Error: {str(e)}" | |
return chat_history + [[user_message, error_message]], session_id | |
def clear_conversation(): | |
"""Clear the conversation history.""" | |
return [], None # Return empty chat history and reset session ID | |
def plt_to_html(fig): | |
"""Convert matplotlib figure to HTML img tag""" | |
buf = io.BytesIO() | |
fig.savefig(buf, format="png", bbox_inches="tight", dpi=100) | |
buf.seek(0) | |
img_str = base64.b64encode(buf.read()).decode("utf-8") | |
plt.close(fig) | |
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">' | |
def predict_future_usage(df, days_ahead=7): | |
"""Predict future token usage based on historical data""" | |
if len(df) < 5: # Need a minimum amount of data for prediction | |
return None, "Insufficient data for prediction" | |
# Group by date and get total tokens per day | |
df['date'] = pd.to_datetime(df['timestamp']).dt.date | |
daily_data = df.groupby('date')['tokens_used'].sum().reset_index() | |
daily_data['date'] = pd.to_datetime(daily_data['date']) | |
# Sort by date | |
daily_data = daily_data.sort_values('date') | |
try: | |
# Simple linear regression for prediction | |
X = np.array(range(len(daily_data))).reshape(-1, 1) | |
y = daily_data['tokens_used'].values | |
model = LinearRegression() | |
model.fit(X, y) | |
# Predict future days | |
future_days = pd.date_range( | |
start=daily_data['date'].max() + timedelta(days=1), | |
periods=days_ahead | |
) | |
future_X = np.array(range(len(daily_data), len(daily_data) + days_ahead)).reshape(-1, 1) | |
predictions = model.predict(future_X) | |
# Create prediction dataframe | |
prediction_df = pd.DataFrame({ | |
'date': future_days, | |
'predicted_tokens': np.maximum(predictions, 0) # Ensure no negative predictions | |
}) | |
# Create visualization | |
fig = plt.figure(figsize=(12, 6)) | |
plt.plot(daily_data['date'], daily_data['tokens_used'], 'o-', label='Historical Usage') | |
plt.plot(prediction_df['date'], prediction_df['predicted_tokens'], 'o--', label='Predicted Usage') | |
plt.title('Token Usage Forecast (Next 7 Days)') | |
plt.xlabel('Date') | |
plt.ylabel('Token Usage') | |
plt.legend() | |
plt.grid(True) | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
return plt_to_html(fig), prediction_df | |
except Exception as e: | |
return None, f"Error in prediction: {str(e)}" | |
def export_analytics_csv(df): | |
"""Export analytics data to CSV""" | |
try: | |
output_path = "analytics/export_" + datetime.now().strftime("%Y%m%d_%H%M%S") + ".csv" | |
df.to_csv(output_path, index=False) | |
return f"Data exported to {output_path}" | |
except Exception as e: | |
return f"Error exporting data: {str(e)}" | |
def generate_enhanced_analytics(date_range=None): | |
"""Generate enhanced analytics from the chat log""" | |
log_file = "analytics/chat_log.json" | |
if not os.path.exists(log_file): | |
return "No analytics data available yet.", None, None, None, None, None, None, None, None, [] | |
try: | |
with open(log_file, "r") as f: | |
logs = json.load(f) | |
if not logs: | |
return "No analytics data available yet.", None, None, None, None, None, None, None, None, [] | |
# Convert to DataFrame | |
df = pd.DataFrame(logs) | |
df["timestamp"] = pd.to_datetime(df["timestamp"]) | |
# Apply date filter if provided | |
if date_range and date_range != "all": | |
end_date = datetime.now() | |
if date_range == "last_7_days": | |
start_date = end_date - timedelta(days=7) | |
elif date_range == "last_30_days": | |
start_date = end_date - timedelta(days=30) | |
elif date_range == "last_90_days": | |
start_date = end_date - timedelta(days=90) | |
else: # Default to all time if unrecognized option | |
start_date = df["timestamp"].min() | |
df = df[(df["timestamp"] >= start_date) & (df["timestamp"] <= end_date)] | |
# 1. Generate usage by model chart | |
model_usage = df.groupby("model").agg({ | |
"tokens_used": "sum", | |
"timestamp": "count" | |
}).reset_index() | |
model_usage.columns = ["model", "total_tokens", "request_count"] | |
fig1 = plt.figure(figsize=(10, 6)) | |
ax1 = sns.barplot(x="model", y="total_tokens", data=model_usage) | |
plt.title("Token Usage by Model", fontsize=14) | |
plt.xlabel("Model", fontsize=12) | |
plt.ylabel("Total Tokens Used", fontsize=12) | |
plt.xticks(rotation=45) | |
# Add values on top of bars | |
for i, v in enumerate(model_usage["total_tokens"]): | |
ax1.text(i, v + 0.1, f"{v:,}", ha='center') | |
plt.tight_layout() | |
model_usage_img = plt_to_html(fig1) | |
# 2. Generate usage over time chart | |
df["date"] = df["timestamp"].dt.date | |
daily_usage = df.groupby("date").agg({ | |
"tokens_used": "sum" | |
}).reset_index() | |
fig2 = plt.figure(figsize=(10, 6)) | |
plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o", linestyle="-", linewidth=2) | |
plt.title("Daily Token Usage", fontsize=14) | |
plt.xlabel("Date", fontsize=12) | |
plt.ylabel("Tokens Used", fontsize=12) | |
plt.grid(True, alpha=0.3) | |
# Format x-axis dates | |
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) | |
plt.gca().xaxis.set_major_locator(mdates.AutoDateLocator()) | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
daily_usage_img = plt_to_html(fig2) | |
# 3. Generate response time chart by model | |
model_response_time = df.groupby("model").agg({ | |
"response_time_sec": ["mean", "median", "std"] | |
}).reset_index() | |
model_response_time.columns = ["model", "mean_time", "median_time", "std_time"] | |
fig3 = plt.figure(figsize=(10, 6)) | |
ax3 = sns.barplot(x="model", y="mean_time", data=model_response_time) | |
# Add error bars | |
for i, v in enumerate(model_response_time["mean_time"]): | |
std = model_response_time.iloc[i]["std_time"] | |
if not np.isnan(std): | |
plt.errorbar(i, v, yerr=std, fmt='none', color='black', capsize=5) | |
plt.title("Response Time by Model", fontsize=14) | |
plt.xlabel("Model", fontsize=12) | |
plt.ylabel("Average Response Time (seconds)", fontsize=12) | |
plt.xticks(rotation=45) | |
# Add values on top of bars | |
for i, v in enumerate(model_response_time["mean_time"]): | |
ax3.text(i, v + 0.1, f"{v:.2f}s", ha='center') | |
plt.tight_layout() | |
response_time_img = plt_to_html(fig3) | |
# 4. Usage by time of day and day of week | |
if "hour_of_day" in df.columns and "day_of_week" in df.columns: | |
# Map day of week to ensure correct order | |
day_order = {day: i for i, day in enumerate(['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'])} | |
df['day_num'] = df['day_of_week'].map(day_order) | |
hourly_usage = df.groupby("hour_of_day").agg({ | |
"tokens_used": "sum" | |
}).reset_index() | |
daily_usage_by_weekday = df.groupby("day_of_week").agg({ | |
"tokens_used": "sum" | |
}).reset_index() | |
# Sort by day of week | |
daily_usage_by_weekday['day_num'] = daily_usage_by_weekday['day_of_week'].map(day_order) | |
daily_usage_by_weekday = daily_usage_by_weekday.sort_values('day_num') | |
fig4 = plt.figure(figsize=(18, 8)) | |
# Hourly usage chart | |
plt.subplot(1, 2, 1) | |
sns.barplot(x="hour_of_day", y="tokens_used", data=hourly_usage) | |
plt.title("Token Usage by Hour of Day", fontsize=14) | |
plt.xlabel("Hour of Day", fontsize=12) | |
plt.ylabel("Total Tokens Used", fontsize=12) | |
plt.xticks(ticks=range(0, 24, 2)) | |
# Daily usage chart | |
plt.subplot(1, 2, 2) | |
sns.barplot(x="day_of_week", y="tokens_used", data=daily_usage_by_weekday) | |
plt.title("Token Usage by Day of Week", fontsize=14) | |
plt.xlabel("Day of Week", fontsize=12) | |
plt.ylabel("Total Tokens Used", fontsize=12) | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
time_pattern_img = plt_to_html(fig4) | |
else: | |
time_pattern_img = None | |
# 5. Message intent/type analysis | |
if "message_intent" in df.columns: | |
intent_usage = df.groupby("message_intent").agg({ | |
"tokens_used": "sum", | |
"timestamp": "count" | |
}).reset_index() | |
intent_usage.columns = ["intent", "total_tokens", "request_count"] | |
fig5 = plt.figure(figsize=(12, 10)) | |
# Pie chart for intent distribution | |
plt.subplot(2, 1, 1) | |
plt.pie(intent_usage["request_count"], labels=intent_usage["intent"], autopct='%1.1f%%', startangle=90) | |
plt.axis('equal') | |
plt.title("Message Intent Distribution", fontsize=14) | |
# Bar chart for tokens by intent | |
plt.subplot(2, 1, 2) | |
sns.barplot(x="intent", y="total_tokens", data=intent_usage) | |
plt.title("Token Usage by Message Intent", fontsize=14) | |
plt.xlabel("Intent", fontsize=12) | |
plt.ylabel("Total Tokens Used", fontsize=12) | |
plt.tight_layout() | |
intent_analysis_img = plt_to_html(fig5) | |
else: | |
intent_analysis_img = None | |
# 6. Model comparison chart | |
if len(model_usage) > 1: | |
fig6 = plt.figure(figsize=(12, 8)) | |
# Create metrics for comparison | |
model_comparison = df.groupby("model").agg({ | |
"tokens_used": ["mean", "median", "sum"], | |
"response_time_sec": ["mean", "median"] | |
}).reset_index() | |
# Flatten column names | |
model_comparison.columns = [ | |
f"{col[0]}_{col[1]}" if col[1] else col[0] | |
for col in model_comparison.columns | |
] | |
# Calculate token efficiency (tokens per second) | |
model_comparison["tokens_per_second"] = model_comparison["tokens_used_mean"] / model_comparison["response_time_sec_mean"] | |
# Normalize for radar chart | |
metrics = ['tokens_used_mean', 'response_time_sec_mean', 'tokens_per_second'] | |
model_comparison_norm = model_comparison.copy() | |
for metric in metrics: | |
max_val = model_comparison[metric].max() | |
if max_val > 0: # Avoid division by zero | |
model_comparison_norm[f"{metric}_norm"] = model_comparison[metric] / max_val | |
# Bar chart comparison | |
plt.subplot(1, 2, 1) | |
x = np.arange(len(model_comparison["model"])) | |
width = 0.35 | |
plt.bar(x - width/2, model_comparison["tokens_used_mean"], width, label="Avg Tokens") | |
plt.bar(x + width/2, model_comparison["response_time_sec_mean"], width, label="Avg Time (s)") | |
plt.xlabel("Model") | |
plt.ylabel("Value") | |
plt.title("Model Performance Comparison") | |
plt.xticks(x, model_comparison["model"], rotation=45) | |
plt.legend() | |
# Scatter plot for efficiency | |
plt.subplot(1, 2, 2) | |
sns.scatterplot( | |
x="response_time_sec_mean", | |
y="tokens_used_mean", | |
size="tokens_per_second", | |
hue="model", | |
data=model_comparison, | |
sizes=(100, 500) | |
) | |
plt.xlabel("Average Response Time (s)") | |
plt.ylabel("Average Tokens Used") | |
plt.title("Model Efficiency") | |
plt.tight_layout() | |
model_comparison_img = plt_to_html(fig6) | |
else: | |
model_comparison_img = None | |
# 7. Usage prediction chart | |
forecast_chart, prediction_data = predict_future_usage(df) | |
# Summary statistics | |
total_tokens = df["tokens_used"].sum() | |
total_requests = len(df) | |
avg_response_time = df["response_time_sec"].mean() | |
# Cost estimation (assuming average pricing) | |
# These rates are estimates and should be updated with actual rates | |
estimated_cost_rates = { | |
"llama3-70b-8192": 0.0001, # per token | |
"llama3-8b-8192": 0.00005, | |
"mistral-saba-24b": 0.00008, | |
"gemma2-9b-it": 0.00006, | |
"allam-2-7b": 0.00005 | |
} | |
total_estimated_cost = 0 | |
model_costs = [] | |
for model_name in df["model"].unique(): | |
model_tokens = df[df["model"] == model_name]["tokens_used"].sum() | |
rate = estimated_cost_rates.get(model_name, 0.00007) # Default to average rate if unknown | |
cost = model_tokens * rate | |
total_estimated_cost += cost | |
model_costs.append({"model": model_name, "tokens": model_tokens, "cost": cost}) | |
# Handling the case where there might not be enough data | |
if not model_usage.empty: | |
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"] | |
else: | |
most_used_model = "N/A" | |
# Create summary without nested f-strings to avoid the backslash issue | |
summary = f""" | |
## Analytics Summary | |
### Overview | |
- **Total API Requests**: {total_requests:,} | |
- **Total Tokens Used**: {total_tokens:,} | |
- **Estimated Cost**: ${total_estimated_cost:.2f} | |
- **Average Response Time**: {avg_response_time:.2f} seconds | |
- **Most Used Model**: {most_used_model} | |
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()} | |
### Model Costs Breakdown | |
""" | |
# Add each model cost as a separate string concatenation | |
for cost in model_costs: | |
summary += f"- **{cost['model']}**: {cost['tokens']:,} tokens / ${cost['cost']:.2f}\n" | |
# Continue with the rest of the summary | |
summary += f""" | |
### Usage Patterns | |
- **Busiest Day**: {df.groupby("date")["tokens_used"].sum().idxmax()} ({df[df["date"] == df.groupby("date")["tokens_used"].sum().idxmax()]["tokens_used"].sum():,} tokens) | |
- **Most Efficient Model**: {df.groupby("model")["response_time_sec"].mean().idxmin()} ({df.groupby("model")["response_time_sec"].mean().min():.2f}s avg response) | |
### Forecast | |
- **Projected Usage (Next 7 Days)**: {prediction_data["predicted_tokens"].sum():,.0f} tokens (estimated) | |
""" | |
return summary, model_usage_img, daily_usage_img, response_time_img, time_pattern_img, intent_analysis_img, model_comparison_img, forecast_chart, export_analytics_csv(df), df.to_dict("records") | |
except Exception as e: | |
error_message = f"Error generating analytics: {str(e)}" | |
return error_message, None, None, None, None, None, None, None, None, [] | |
# Define available models | |
models = [ | |
"llama3-70b-8192", | |
"llama3-8b-8192", | |
"mistral-saba-24b", | |
"gemma2-9b-it", | |
"allam-2-7b" | |
] | |
# Define templates | |
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"] | |
# Define date range options for analytics filtering | |
date_ranges = ["all", "last_7_days", "last_30_days", "last_90_days"] | |
# Create the Gradio interface | |
with gr.Blocks(title="Enhanced Groq AI Chat Playground") as app: | |
# Store session ID (hidden from UI) | |
session_id = gr.State(None) | |
gr.Markdown("# Groq AI Chat Playground") | |
# Create tabs for Chat, Analytics and Settings | |
with gr.Tabs(): | |
with gr.Tab("Chat"): | |
# New model information accordion | |
with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False): | |
gr.Markdown(""" | |
### Available Models and Use Cases | |
**llama3-70b-8192** | |
- Meta's most powerful language model | |
- 70 billion parameters with 8192 token context window | |
- Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis | |
- Optimal for users needing the highest quality AI responses | |
**llama3-8b-8192** | |
- Lighter version of Llama 3 | |
- 8 billion parameters with 8192 token context window | |
- Best for: Faster responses, everyday tasks, simpler queries | |
- Good balance between performance and speed | |
**mistral-saba-24b** | |
- Mistral AI's advanced model | |
- 24 billion parameters | |
- Best for: High-quality reasoning, code generation, and structured outputs | |
- Excellent for technical and professional use cases | |
**gemma2-9b-it** | |
- Google's instruction-tuned model | |
- 9 billion parameters | |
- Best for: Following specific instructions, educational content, and general knowledge queries | |
- Well-rounded performance for various tasks | |
**allam-2-7b** | |
- Specialized model from Aleph Alpha | |
- 7 billion parameters | |
- Best for: Multilingual support, concise responses, and straightforward Q&A | |
- Good for international users and simpler applications | |
*Note: Larger models generally provide higher quality responses but may take slightly longer to generate.* | |
""") | |
gr.Markdown("Enter your Groq API key to start chatting with AI models.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
api_key_input = gr.Textbox( | |
label="Groq API Key", | |
placeholder="Enter your Groq API key (starts with gsk_)", | |
type="password" | |
) | |
with gr.Column(scale=1): | |
test_button = gr.Button("Test API Connection") | |
api_status = gr.Textbox(label="API Status", interactive=False) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
model_dropdown = gr.Dropdown( | |
choices=models, | |
label="Select Model", | |
value="llama3-70b-8192" | |
) | |
with gr.Column(scale=1): | |
template_dropdown = gr.Dropdown( | |
choices=templates, | |
label="Select Template", | |
value="General Assistant" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Advanced Settings", open=False): | |
temperature_slider = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.7, step=0.01, | |
label="Temperature (higher = more creative, lower = more focused)" | |
) | |
max_tokens_slider = gr.Slider( | |
minimum=256, maximum=8192, value=4096, step=256, | |
label="Max Tokens (maximum length of response)" | |
) | |
top_p_slider = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.95, step=0.01, | |
label="Top P (nucleus sampling probability threshold)" | |
) | |
chatbot = gr.Chatbot(label="Conversation", height=500) | |
with gr.Row(): | |
message_input = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here...", | |
lines=3 | |
) | |
with gr.Row(): | |
submit_button = gr.Button("Send", variant="primary") | |
clear_button = gr.Button("Clear Conversation") | |
# Enhanced Analytics Dashboard Tab | |
with gr.Tab("Analytics Dashboard"): | |
with gr.Column(): | |
gr.Markdown("# Enhanced Usage Analytics Dashboard") | |
with gr.Row(): | |
refresh_analytics_button = gr.Button("Refresh Analytics", variant="primary") | |
date_filter = gr.Dropdown( | |
choices=date_ranges, | |
value="all", | |
label="Date Range Filter", | |
info="Filter analytics by time period" | |
) | |
export_button = gr.Button("Export Data to CSV") | |
analytics_summary = gr.Markdown() | |
with gr.Tabs(): | |
with gr.Tab("Overview"): | |
with gr.Row(): | |
with gr.Column(): | |
model_usage_chart = gr.HTML(label="Token Usage by Model") | |
with gr.Column(): | |
daily_usage_chart = gr.HTML(label="Daily Token Usage") | |
response_time_chart = gr.HTML(label="Response Time by Model") | |
with gr.Tab("Usage Patterns"): | |
time_pattern_chart = gr.HTML(label="Usage by Time and Day") | |
intent_analysis_chart = gr.HTML(label="Message Intent Analysis") | |
with gr.Tab("Model Comparison"): | |
model_comparison_chart = gr.HTML(label="Model Performance Comparison") | |
with gr.Tab("Forecast"): | |
forecast_chart = gr.HTML(label="Token Usage Forecast") | |
gr.Markdown("""This forecast uses linear regression on your historical data to predict token usage for the next 7 days. | |
Note that predictions become more accurate with more usage data.""") | |
with gr.Tab("Raw Data"): | |
raw_data_table = gr.DataFrame(label="Raw Analytics Data") | |
export_status = gr.Textbox(label="Export Status") | |
# Define functions for button callbacks | |
def test_api_connection_btn(api_key): | |
"""Callback for testing API connection""" | |
is_valid, validation_message = validate_api_key(api_key) | |
if not is_valid: | |
return validation_message | |
connection_valid, connection_message = test_api_connection(api_key) | |
return connection_message | |
def refresh_analytics_callback(date_range): | |
"""Callback for refreshing analytics dashboard""" | |
return generate_enhanced_analytics(date_range) | |
def export_data_callback(df_records): | |
"""Callback for exporting data to CSV""" | |
try: | |
df = pd.DataFrame(df_records) | |
return export_analytics_csv(df) | |
except Exception as e: | |
return f"Error exporting data: {str(e)}" | |
# Set up event handlers | |
test_button.click( | |
test_api_connection_btn, | |
inputs=[api_key_input], | |
outputs=[api_status] | |
) | |
submit_button.click( | |
enhanced_chat_with_groq, | |
inputs=[ | |
api_key_input, | |
model_dropdown, | |
message_input, | |
temperature_slider, | |
max_tokens_slider, | |
top_p_slider, | |
chatbot, | |
template_dropdown, | |
session_id | |
], | |
outputs=[chatbot, session_id] | |
) | |
message_input.submit( | |
enhanced_chat_with_groq, | |
inputs=[ | |
api_key_input, | |
model_dropdown, | |
message_input, | |
temperature_slider, | |
max_tokens_slider, | |
top_p_slider, | |
chatbot, | |
template_dropdown, | |
session_id | |
], | |
outputs=[chatbot, session_id] | |
) | |
clear_button.click( | |
clear_conversation, | |
outputs=[chatbot, session_id] | |
) | |
refresh_analytics_button.click( | |
refresh_analytics_callback, | |
inputs=[date_filter], | |
outputs=[ | |
analytics_summary, | |
model_usage_chart, | |
daily_usage_chart, | |
response_time_chart, | |
time_pattern_chart, | |
intent_analysis_chart, | |
model_comparison_chart, | |
forecast_chart, | |
export_status, | |
raw_data_table | |
] | |
) | |
export_button.click( | |
export_data_callback, | |
inputs=[raw_data_table], | |
outputs=[export_status] | |
) | |
# Launch the application | |
if __name__ == "__main__": | |
app.launch(share=False) # Set share=True for public URL |