EduGuide / app.py
shukdevdatta123's picture
Update app.py
9117085 verified
raw
history blame
15.3 kB
import gradio as gr
import os
import re
from groq import Groq
import pandas as pd
import matplotlib.pyplot as plt
import io
import base64
from datetime import datetime, timedelta
import json
def validate_api_key(api_key):
"""Validate if the API key has the correct format."""
if not api_key.strip():
return False, "API key cannot be empty"
if not api_key.startswith("gsk_"):
return False, "Invalid API key format. Groq API keys typically start with 'gsk_'"
return True, "API key looks valid"
def test_api_connection(api_key):
"""Test the API connection with a minimal request."""
try:
client = Groq(api_key=api_key)
client.chat.completions.create(
model="llama3-70b-8192",
messages=[{"role": "user", "content": "test"}],
max_tokens=5
)
return True, "API connection successful"
except Exception as e:
if "authentication" in str(e).lower() or "api key" in str(e).lower():
return False, "Authentication failed: Invalid API key"
else:
return False, f"Error connecting to Groq API: {str(e)}"
os.makedirs("analytics", exist_ok=True)
def log_chat_interaction(model, tokens_used, response_time, user_message_length):
"""Log chat interactions for analytics"""
timestamp = datetime.now().isoformat()
log_file = "analytics/chat_log.json"
log_entry = {
"timestamp": timestamp,
"model": model,
"tokens_used": tokens_used,
"response_time_sec": response_time,
"user_message_length": user_message_length
}
if os.path.exists(log_file):
try:
with open(log_file, "r") as f:
logs = json.load(f)
except:
logs = []
else:
logs = []
logs.append(log_entry)
with open(log_file, "w") as f:
json.dump(logs, f, indent=2)
def get_template_prompt(template_name):
"""Get system prompt for a given template name"""
templates = {
"General Assistant": "You are a helpful, harmless, and honest AI assistant.",
"Code Helper": "You are a programming assistant. Provide detailed code explanations and examples.",
"Creative Writer": "You are a creative writing assistant. Generate engaging and imaginative content.",
"Technical Expert": "You are a technical expert. Provide accurate, detailed technical information.",
"Data Analyst": "You are a data analysis assistant. Help interpret and analyze data effectively."
}
return templates.get(template_name, "")
def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name=""):
"""Enhanced chat function with analytics logging"""
start_time = datetime.now()
system_prompt = get_template_prompt(template_name) if template_name else ""
is_valid, message = validate_api_key(api_key)
if not is_valid:
return chat_history + [[user_message, f"Error: {message}"]]
connection_valid, connection_message = test_api_connection(api_key)
if not connection_valid:
return chat_history + [[user_message, f"Error: {connection_message}"]]
try:
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": user_message})
client = Groq(api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p
)
end_time = datetime.now()
response_time = (end_time - start_time).total_seconds()
tokens_used = response.usage.total_tokens
log_chat_interaction(
model=model,
tokens_used=tokens_used,
response_time=response_time,
user_message_length=len(user_message)
)
assistant_response = response.choices[0].message.content
return chat_history + [[user_message, assistant_response]]
except Exception as e:
error_message = f"Error: {str(e)}"
return chat_history + [[user_message, error_message]]
def clear_conversation():
"""Clear the conversation history."""
return []
def plt_to_html(fig):
"""Convert matplotlib figure to HTML img tag"""
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode("utf-8")
plt.close(fig)
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'
def generate_analytics():
"""Generate analytics from the chat log"""
log_file = "analytics/chat_log.json"
if not os.path.exists(log_file):
return "No analytics data available yet.", None, None, None, []
try:
with open(log_file, "r") as f:
logs = json.load(f)
if not logs:
return "No analytics data available yet.", None, None, None, []
df = pd.DataFrame(logs)
df["timestamp"] = pd.to_datetime(df["timestamp"])
model_usage = df.groupby("model").agg({
"tokens_used": "sum",
"timestamp": "count"
}).reset_index()
model_usage.columns = ["model", "total_tokens", "request_count"]
fig1 = plt.figure(figsize=(10, 6))
plt.bar(model_usage["model"], model_usage["total_tokens"])
plt.title("Token Usage by Model")
plt.xlabel("Model")
plt.ylabel("Total Tokens Used")
plt.xticks(rotation=45)
plt.tight_layout()
model_usage_img = plt_to_html(fig1)
df["date"] = df["timestamp"].dt.date
daily_usage = df.groupby("date").agg({
"tokens_used": "sum"
}).reset_index()
fig2 = plt.figure(figsize=(10, 6))
plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o")
plt.title("Daily Token Usage")
plt.xlabel("Date")
plt.ylabel("Tokens Used")
plt.grid(True)
plt.tight_layout()
daily_usage_img = plt_to_html(fig2)
model_response_time = df.groupby("model").agg({
"response_time_sec": "mean"
}).reset_index()
fig3 = plt.figure(figsize=(10, 6))
plt.bar(model_response_time["model"], model_response_time["response_time_sec"])
plt.title("Average Response Time by Model")
plt.xlabel("Model")
plt.ylabel("Response Time (seconds)")
plt.xticks(rotation=45)
plt.tight_layout()
response_time_img = plt_to_html(fig3)
total_tokens = df["tokens_used"].sum()
total_requests = len(df)
avg_response_time = df["response_time_sec"].mean()
if not model_usage.empty:
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
else:
most_used_model = "N/A"
summary = f"""
## Analytics Summary
- **Total API Requests**: {total_requests}
- **Total Tokens Used**: {total_tokens:,}
- **Average Response Time**: {avg_response_time:.2f} seconds
- **Most Used Model**: {most_used_model}
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
"""
return summary, model_usage_img, daily_usage_img, response_time_img, df.to_dict("records")
except Exception as e:
error_message = f"Error generating analytics: {str(e)}"
return error_message, None, None, None, []
def clear_analytics():
"""Clear the analytics data"""
log_file = "analytics/chat_log.json"
if os.path.exists(log_file):
os.remove(log_file)
return "Analytics data has been cleared.", None, None, None
models = [
"llama3-70b-8192",
"llama3-8b-8192",
"mistral-saba-24b",
"gemma2-9b-it",
"allam-2-7b"
]
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"]
with gr.Blocks(title="Groq AI Chat Playground") as app:
gr.Markdown("# Groq AI Chat Playground")
with gr.Tabs():
with gr.Tab("Chat"):
with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False):
gr.Markdown("""
### Available Models and Use Cases
**llama3-70b-8192**
- Meta's most powerful language model
- 70 billion parameters with 8192 token context window
- Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis
- Optimal for users needing the highest quality AI responses
**llama3-8b-8192**
- Lighter version of Llama 3
- 8 billion parameters with 8192 token context window
- Best for: Faster responses, everyday tasks, simpler queries
- Good balance between performance and speed
**mistral-saba-24b**
- Mistral AI's advanced model
- 24 billion parameters
- Best for: High-quality reasoning, code generation, and structured outputs
- Excellent for technical and professional use cases
**gemma2-9b-it**
- Google's instruction-tuned model
- 9 billion parameters
- Best for: Following specific instructions, educational content, and general knowledge queries
- Well-rounded performance for various tasks
**allam-2-7b**
- Specialized model from Aleph Alpha
- 7 billion parameters
- Best for: Multilingual support, concise responses, and straightforward Q&A
- Good for international users and simpler applications
*Note: Larger models generally provide higher quality responses but may take slightly longer to generate.*
""")
gr.Markdown("Enter your Groq API key to start chatting with AI models.")
with gr.Row():
with gr.Column(scale=2):
api_key_input = gr.Textbox(
label="Groq API Key",
placeholder="Enter your Groq API key (starts with gsk_)",
type="password"
)
with gr.Column(scale=1):
test_button = gr.Button("Test API Connection")
api_status = gr.Textbox(label="API Status", interactive=False)
with gr.Row():
with gr.Column(scale=2):
model_dropdown = gr.Dropdown(
choices=models,
label="Select Model",
value="llama3-70b-8192"
)
with gr.Column(scale=1):
template_dropdown = gr.Dropdown(
choices=templates,
label="Select Template",
value="General Assistant"
)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
temperature_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.01,
label="Temperature (higher = more creative, lower = more focused)"
)
max_tokens_slider = gr.Slider(
minimum=256, maximum=8192, value=4096, step=256,
label="Max Tokens (maximum length of response)"
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.95, step=0.01,
label="Top P (nucleus sampling probability threshold)"
)
chatbot = gr.Chatbot(label="Conversation", height=500)
with gr.Row():
message_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=3
)
with gr.Row():
submit_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear Conversation")
with gr.Tab("Analytics Dashboard"):
with gr.Column():
gr.Markdown("# Usage Analytics Dashboard")
refresh_analytics_button = gr.Button("Refresh Analytics")
clear_analytics_button = gr.Button("Clear Analytics Data")
analytics_summary = gr.Markdown()
with gr.Row():
with gr.Column():
model_usage_chart = gr.HTML(label="Token Usage by Model")
with gr.Column():
response_time_chart = gr.HTML(label="Response Time by Model")
analytics_table = gr.DataFrame(label="Raw Analytics Data")
submit_button.click(
fn=enhanced_chat_with_groq,
inputs=[
api_key_input,
model_dropdown,
message_input,
temperature_slider,
max_tokens_slider,
top_p_slider,
chatbot,
template_dropdown
],
outputs=chatbot
).then(
fn=lambda: "",
inputs=None,
outputs=message_input
)
message_input.submit(
fn=enhanced_chat_with_groq,
inputs=[
api_key_input,
model_dropdown,
message_input,
temperature_slider,
max_tokens_slider,
top_p_slider,
chatbot,
template_dropdown
],
outputs=chatbot
).then(
fn=lambda: "",
inputs=None,
outputs=message_input
)
clear_button.click(
fn=clear_conversation,
inputs=None,
outputs=chatbot
)
test_button.click(
fn=test_api_connection,
inputs=[api_key_input],
outputs=[api_status]
)
refresh_analytics_button.click(
fn=generate_analytics,
inputs=[],
outputs=[analytics_summary, model_usage_chart, response_time_chart, analytics_table]
)
clear_analytics_button.click(
fn=clear_analytics,
inputs=[],
outputs=[analytics_summary, model_usage_chart, response_time_chart, analytics_table]
)
if __name__ == "__main__":
app.launch(share=False)