Create abc.txt
Browse files
abc.txt
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader
|
4 |
+
import openai
|
5 |
+
from langchain.prompts import ChatPromptTemplate
|
6 |
+
from langchain_core.output_parsers import StrOutputParser
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from fpdf import FPDF
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Set up Streamlit UI
|
12 |
+
st.title('Educational Assistant')
|
13 |
+
st.header('Summary, Quiz Generator, and Q&A')
|
14 |
+
st.sidebar.title('Drop your PDF here')
|
15 |
+
|
16 |
+
# Input OpenAI API key from keyboard
|
17 |
+
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key", type="password")
|
18 |
+
|
19 |
+
user_file_upload = st.sidebar.file_uploader(label='', type='pdf')
|
20 |
+
|
21 |
+
summary_clicked = st.button('Generate Summary')
|
22 |
+
quiz_clicked = st.button('Generate Quiz')
|
23 |
+
|
24 |
+
# Input for asking questions
|
25 |
+
question_input = st.text_input("Enter your question about the document:")
|
26 |
+
|
27 |
+
# Button to trigger question answering, placed after the input
|
28 |
+
ask_question_clicked = st.button('Ask a Question')
|
29 |
+
|
30 |
+
# Function to generate a PDF and allow download
|
31 |
+
def generate_pdf(response, filename="response.pdf"):
|
32 |
+
pdf = FPDF()
|
33 |
+
pdf.add_page()
|
34 |
+
|
35 |
+
# Adding a Unicode-compatible font (like Arial Unicode MS or other compatible font)
|
36 |
+
pdf.add_font('ArialUnicode', '', 'arialuni.ttf', uni=True) # Path to font, make sure this is correct for your system
|
37 |
+
pdf.set_font('ArialUnicode', '', 12)
|
38 |
+
|
39 |
+
# Add the response text
|
40 |
+
pdf.multi_cell(0, 10, response)
|
41 |
+
|
42 |
+
# Save to a temporary file
|
43 |
+
pdf.output(filename)
|
44 |
+
|
45 |
+
# Return the file path
|
46 |
+
return filename
|
47 |
+
|
48 |
+
if openai_api_key:
|
49 |
+
# Set OpenAI API key
|
50 |
+
openai.api_key = openai_api_key
|
51 |
+
|
52 |
+
if user_file_upload:
|
53 |
+
# Read the uploaded file
|
54 |
+
pdf_data = user_file_upload.read()
|
55 |
+
|
56 |
+
# Save the uploaded file to a temporary location
|
57 |
+
with open("temp_pdf_file.pdf", "wb") as f:
|
58 |
+
f.write(pdf_data)
|
59 |
+
|
60 |
+
# Load the temporary PDF file
|
61 |
+
loader = PyPDFLoader("temp_pdf_file.pdf")
|
62 |
+
data = loader.load_and_split()
|
63 |
+
|
64 |
+
## Prompt Template for Summary
|
65 |
+
prompt_1 = ChatPromptTemplate.from_messages(
|
66 |
+
[
|
67 |
+
("system", "You are a smart assistant. Give a summary of the user's PDF. Be polite."),
|
68 |
+
("user", "{data}")
|
69 |
+
]
|
70 |
+
)
|
71 |
+
|
72 |
+
# Pass the OpenAI API key explicitly to the ChatOpenAI instance
|
73 |
+
llm_summary = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) # Pass the key here
|
74 |
+
output_parser = StrOutputParser()
|
75 |
+
chain_1 = prompt_1 | llm_summary | output_parser
|
76 |
+
|
77 |
+
## Prompt Template for Quiz
|
78 |
+
prompt_2 = ChatPromptTemplate.from_messages(
|
79 |
+
[
|
80 |
+
("system", "You are a smart assistant. Generate 10 multiple-choice quiz questions with 4 options each (including correct and incorrect options) from the user's PDF. Please also include the correct answer in your response. Be polite."),
|
81 |
+
("user", "{data}")
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
# Pass the OpenAI API key explicitly to the ChatOpenAI instance
|
86 |
+
llm_quiz = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) # Pass the key here
|
87 |
+
output_parser = StrOutputParser()
|
88 |
+
chain_2 = prompt_2 | llm_quiz | output_parser
|
89 |
+
|
90 |
+
## Prompt Template for Question-Answering
|
91 |
+
prompt_3 = ChatPromptTemplate.from_messages(
|
92 |
+
[
|
93 |
+
("system", "You are a smart assistant. Answer the user's question based on the content of the PDF. Be polite."),
|
94 |
+
("user", "{data}\n\nUser's question: {question}")
|
95 |
+
]
|
96 |
+
)
|
97 |
+
|
98 |
+
# Pass the OpenAI API key explicitly to the ChatOpenAI instance
|
99 |
+
llm_qa = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) # Pass the key here
|
100 |
+
output_parser = StrOutputParser()
|
101 |
+
chain_3 = prompt_3 | llm_qa | output_parser
|
102 |
+
|
103 |
+
if summary_clicked:
|
104 |
+
# Generate summary
|
105 |
+
summary_response = chain_1.invoke({'data': data})
|
106 |
+
st.write(summary_response)
|
107 |
+
|
108 |
+
# Generate PDF for the summary and offer it as a download
|
109 |
+
pdf_filename = generate_pdf(summary_response, filename="summary_response.pdf")
|
110 |
+
st.download_button("Download Summary as PDF", data=open(pdf_filename, "rb").read(), file_name=pdf_filename, mime="application/pdf")
|
111 |
+
|
112 |
+
elif quiz_clicked:
|
113 |
+
# Generate quiz
|
114 |
+
quiz_response = chain_2.invoke({'data': data})
|
115 |
+
st.write(quiz_response)
|
116 |
+
|
117 |
+
# Generate PDF for the quiz and offer it as a download
|
118 |
+
pdf_filename = generate_pdf(quiz_response, filename="quiz_response.pdf")
|
119 |
+
st.download_button("Download Quiz as PDF", data=open(pdf_filename, "rb").read(), file_name=pdf_filename, mime="application/pdf")
|
120 |
+
|
121 |
+
elif ask_question_clicked and question_input:
|
122 |
+
# Generate answer for the user's question
|
123 |
+
question_answer_response = chain_3.invoke({'data': data, 'question': question_input})
|
124 |
+
st.write(question_answer_response)
|
125 |
+
|
126 |
+
# Generate PDF for the question answer and offer it as a download
|
127 |
+
pdf_filename = generate_pdf(question_answer_response, filename="question_answer_response.pdf")
|
128 |
+
st.download_button("Download Answer as PDF", data=open(pdf_filename, "rb").read(), file_name=pdf_filename, mime="application/pdf")
|
129 |
+
else:
|
130 |
+
st.sidebar.warning("Please enter your OpenAI API Key to proceed.")
|