import streamlit as st from langchain_community.document_loaders import PyPDFLoader import openai from langchain.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain.chat_models import ChatOpenAI import pandas as pd from datetime import datetime, timedelta st.title('Educational Assistant') st.header('Summary, Quiz Generator, Q&A, and Topics to be Covered') st.sidebar.title('Drop your PDF here') openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key", type="password") user_file_upload = st.sidebar.file_uploader(label='', type='pdf') option = st.sidebar.radio("Choose an option", ('Generate Summary', 'Generate Quiz', 'Ask a Question', 'Topics to be Covered')) if openai_api_key: openai.api_key = openai_api_key if user_file_upload: pdf_data = user_file_upload.read() with open("temp_pdf_file.pdf", "wb") as f: f.write(pdf_data) loader = PyPDFLoader("temp_pdf_file.pdf") data = loader.load_and_split() prompt_4 = ChatPromptTemplate.from_messages( [ ("system", "You are a smart assistant. Analyze the user's PDF and generate 7 topics with detailed themes for the next 7 days. Output format: 'Day X: Task\tTheme'"), ("user", "{data}") ] ) llm_topics = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) output_parser = StrOutputParser() chain_4 = prompt_4 | llm_topics | output_parser if option == 'Topics to be Covered': topics_response = chain_4.invoke({'data': data}) topics_list = topics_response.split("\n") start_date = datetime.today() table_data = [] for i in range(7): day_date = start_date + timedelta(days=i) topic_parts = topics_list[i].split('\t') if i < len(topics_list) else [f"Day {i+1}: you will figure out my llm program", "you will figure out my llm program"] table_data.append([day_date.strftime("%d-%b-%y"), topic_parts[0], topic_parts[1]]) df = pd.DataFrame(table_data, columns=["Day", "Tasks", "Theme"]) st.write("### Topics to be Covered in the Next 7 Days") st.table(df) else: st.sidebar.warning("Please enter your OpenAI API Key to proceed.")