EngToJap-2.0 / app.py
shukdevdatta123's picture
Update app.py
13c2ee0 verified
raw
history blame
7.1 kB
import openai
import os
import streamlit as st
from PIL import Image
from gtts import gTTS
import tempfile
import shutil
import re
# Function to translate text to any language and provide pronunciation (Romaji or phonetic)
def translate_to_language(api_key, text, language):
"""
Translates English text to the target language using OpenAI's API and provides pronunciation.
"""
# Validate input
if not api_key:
return "Error: API key is missing.", None
if not text:
return "Error: Input text is empty.", None
# Set the OpenAI API key
openai.api_key = api_key
# Define the messages for the chat model
messages_translation = [
{"role": "system", "content": "You are a helpful translator."},
{"role": "user", "content": f"Translate the following English text to {language}:\n\n{text}"}
]
try:
# Call the OpenAI API to get the translation
response_translation = openai.ChatCompletion.create(
model="gpt-4o", # Use the correct endpoint for chat models
messages=messages_translation,
max_tokens=300,
temperature=0.5
)
# Extract the translated text
translated_text = response_translation.choices[0].message['content'].strip()
# Define the messages for the pronunciation (phonetic) request
messages_pronunciation = [
{"role": "system", "content": f"You are a helpful assistant who provides the pronunciation in phonetic script of {language} text."},
{"role": "user", "content": f"Provide the pronunciation for the following {language} text:\n\n{translated_text}"}
]
# Call the OpenAI API to get the pronunciation
response_pronunciation = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages_pronunciation,
max_tokens=300,
temperature=0.5
)
# Extract the pronunciation from the response
pronunciation = response_pronunciation.choices[0].message['content'].strip()
return translated_text, pronunciation
except openai.error.OpenAIError as e:
return f"OpenAI API error: {str(e)}", None
except Exception as e:
return f"An unexpected error occurred: {str(e)}", None
# Function to clean pronunciation text
def clean_pronunciation(pronunciation_text):
# Remove introductory phrases like "Sure! The pronunciation... is:"
pronunciation_cleaned = re.sub(r"^Sure! The pronunciation for the.*?text.*?is[:]*", "", pronunciation_text).strip()
return pronunciation_cleaned
# Function to generate audio file from text using gTTS
def generate_audio_from_text(text, language_code):
tts = gTTS(text, lang=language_code) # Use the appropriate language code
# Save audio to a temporary file
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio_file.name)
return temp_audio_file.name
# Streamlit UI
st.title("English to Multiple Language Translator with Pronunciation")
st.markdown("Translate English text into Japanese, Spanish, Italian, and German and get their pronunciation (phonetic).")
translateimg = Image.open("Untitled.png") # Ensure the file is in the correct directory
st.image(translateimg, use_container_width=True) # Adjust the size as per preference
# Access the API key from Hugging Face Secrets
api_key = os.getenv("OPENAI_API_KEY")
# Input field for the text
english_text = st.text_area("Enter the English text to translate")
# Language selection dropdown
languages = ["Japanese", "Spanish", "Italian", "German"]
selected_language = st.selectbox("Select the target language", languages)
# Initialize the progress bar and progress text above the translate button
progress_bar = st.progress(0)
progress_text = st.empty() # To show the progress text
# Mapping of languages to their corresponding language codes for gTTS
language_codes = {
"Japanese": "ja",
"Spanish": "es",
"Italian": "it",
"German": "de"
}
# Button to trigger the translation
if st.button("Translate"):
if api_key and english_text:
try:
# Step 1: Request translation
progress_text.text(f"Translating text to {selected_language}...")
progress_bar.progress(33) # Update progress bar to 33%
# Translate based on the selected language
translated_text, pronunciation = translate_to_language(api_key, english_text, selected_language)
# Step 2: Check if translation was successful
if pronunciation:
progress_text.text(f"Generating {selected_language} pronunciation...")
progress_bar.progress(66) # Update progress bar to 66%
# Clean pronunciation (remove unnecessary parts)
cleaned_pronunciation = clean_pronunciation(pronunciation)
st.markdown("### Translation Result:")
st.write(f"**English Text:** {english_text}")
st.write(f"**{selected_language} Translation:** {translated_text}")
st.write(f"**Pronunciation:** {cleaned_pronunciation}")
# Save the result in a text file
result_text = f"English Text: {english_text}\n\n{selected_language} Translation: {translated_text}\nPronunciation: {cleaned_pronunciation}"
# Write to a text file
with open("translation_result.txt", "w") as file:
file.write(result_text)
# Create a download button for the user to download the file
with open("translation_result.txt", "rb") as file:
st.download_button(
label="Download Translation Result",
data=file,
file_name="translation_result.txt",
mime="text/plain"
)
# Step 3: Generate audio for pronunciation
progress_text.text(f"Generating pronunciation audio for {selected_language}...")
progress_bar.progress(100) # Update progress bar to 100%
# Generate audio for the cleaned pronunciation in the selected language
audio_file_path = generate_audio_from_text(cleaned_pronunciation, language_codes[selected_language])
# Provide a button to play the pronunciation audio
st.audio(audio_file_path, format="audio/mp3")
translateimg2 = Image.open("v3.png") # Ensure the file is in the correct directory
st.image(translateimg2, width=150) # Adjust the size as per preference
else:
st.error(translated_text) # Display error message if API call fails
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
if not api_key:
st.error("API key is missing. Please add it as a secret in Hugging Face Settings.")
else:
st.error("Please provide text to translate.")