import openai import os import streamlit as st from PIL import Image from gtts import gTTS import tempfile import shutil import re # Function to translate text to any language and provide pronunciation (Romaji or phonetic) def translate_to_language(api_key, text, language): """ Translates English text to the target language using OpenAI's API and provides pronunciation. """ # Validate input if not api_key: return "Error: API key is missing.", None if not text: return "Error: Input text is empty.", None # Set the OpenAI API key openai.api_key = api_key # Define the messages for the chat model messages_translation = [ {"role": "system", "content": "You are a helpful translator."}, {"role": "user", "content": f"Translate the following English text to {language}:\n\n{text}"} ] try: # Call the OpenAI API to get the translation response_translation = openai.ChatCompletion.create( model="gpt-4o", # Use the correct endpoint for chat models messages=messages_translation, max_tokens=300, temperature=0.5 ) # Extract the translated text translated_text = response_translation.choices[0].message['content'].strip() # Define the messages for the pronunciation (phonetic) request messages_pronunciation = [ {"role": "system", "content": f"You are a helpful assistant who provides the pronunciation in phonetic script of {language} text."}, {"role": "user", "content": f"Provide the pronunciation for the following {language} text:\n\n{translated_text}"} ] # Call the OpenAI API to get the pronunciation response_pronunciation = openai.ChatCompletion.create( model="gpt-4o", messages=messages_pronunciation, max_tokens=300, temperature=0.5 ) # Extract the pronunciation from the response pronunciation = response_pronunciation.choices[0].message['content'].strip() return translated_text, pronunciation except openai.error.OpenAIError as e: return f"OpenAI API error: {str(e)}", None except Exception as e: return f"An unexpected error occurred: {str(e)}", None # Function to clean pronunciation text def clean_pronunciation(pronunciation_text): # Remove introductory phrases like "Sure! The pronunciation... is:" pronunciation_cleaned = re.sub(r"^Sure! The pronunciation for the.*?text.*?is[:]*", "", pronunciation_text).strip() return pronunciation_cleaned # Function to generate audio file from text using gTTS def generate_audio_from_text(text, language_code): tts = gTTS(text, lang=language_code) # Use the appropriate language code # Save audio to a temporary file temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") tts.save(temp_audio_file.name) return temp_audio_file.name # Streamlit UI st.title("English to Multiple Language Translator with Pronunciation") st.markdown("Translate English text into Japanese, Spanish, Italian, and German and get their pronunciation (phonetic).") translateimg = Image.open("Untitled.png") # Ensure the file is in the correct directory st.image(translateimg, use_container_width=True) # Adjust the size as per preference # Access the API key from Hugging Face Secrets api_key = os.getenv("OPENAI_API_KEY") # Input field for the text english_text = st.text_area("Enter the English text to translate") # Language selection dropdown languages = ["Japanese", "Spanish", "Italian", "German"] selected_language = st.selectbox("Select the target language", languages) # Initialize the progress bar and progress text above the translate button progress_bar = st.progress(0) progress_text = st.empty() # To show the progress text # Mapping of languages to their corresponding language codes for gTTS language_codes = { "Japanese": "ja", "Spanish": "es", "Italian": "it", "German": "de" } # Button to trigger the translation if st.button("Translate"): if api_key and english_text: try: # Step 1: Request translation progress_text.text(f"Translating text to {selected_language}...") progress_bar.progress(33) # Update progress bar to 33% # Translate based on the selected language translated_text, pronunciation = translate_to_language(api_key, english_text, selected_language) # Step 2: Check if translation was successful if pronunciation: progress_text.text(f"Generating {selected_language} pronunciation...") progress_bar.progress(66) # Update progress bar to 66% # Clean pronunciation (remove unnecessary parts) cleaned_pronunciation = clean_pronunciation(pronunciation) st.markdown("### Translation Result:") st.write(f"**English Text:** {english_text}") st.write(f"**{selected_language} Translation:** {translated_text}") st.write(f"**Pronunciation:** {cleaned_pronunciation}") # Save the result in a text file result_text = f"English Text: {english_text}\n\n{selected_language} Translation: {translated_text}\nPronunciation: {cleaned_pronunciation}" # Write to a text file with open("translation_result.txt", "w") as file: file.write(result_text) # Create a download button for the user to download the file with open("translation_result.txt", "rb") as file: st.download_button( label="Download Translation Result", data=file, file_name="translation_result.txt", mime="text/plain" ) # Step 3: Generate audio for pronunciation progress_text.text(f"Generating pronunciation audio for {selected_language}...") progress_bar.progress(100) # Update progress bar to 100% # Generate audio for the cleaned pronunciation in the selected language audio_file_path = generate_audio_from_text(cleaned_pronunciation, language_codes[selected_language]) # Provide a button to play the pronunciation audio st.audio(audio_file_path, format="audio/mp3") translateimg2 = Image.open("v3.png") # Ensure the file is in the correct directory st.image(translateimg2, width=150) # Adjust the size as per preference else: st.error(translated_text) # Display error message if API call fails except Exception as e: st.error(f"An error occurred: {str(e)}") else: if not api_key: st.error("API key is missing. Please add it as a secret in Hugging Face Settings.") else: st.error("Please provide text to translate.")