Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import openai
|
3 |
import json
|
4 |
-
import
|
5 |
-
from dotenv import load_dotenv
|
6 |
|
7 |
# Load the OpenAI API Key
|
8 |
api_key = st.text_input('Enter your OpenAI API Key', type="password")
|
@@ -78,7 +77,6 @@ def save_responses_to_json(username, responses):
|
|
78 |
"responses": [{"text": question["text"], "answer": response} for question, response in zip(questions, responses)]
|
79 |
}
|
80 |
|
81 |
-
# Save to UserChoices.json
|
82 |
with open("UserChoices.json", "w") as json_file:
|
83 |
json.dump(user_data, json_file, indent=4)
|
84 |
|
@@ -90,10 +88,34 @@ def save_personality_to_output_json(username, mbti_type_classic, mbti_type_llm):
|
|
90 |
"mbti_type_llm": mbti_type_llm
|
91 |
}
|
92 |
|
93 |
-
# Save to Output.json
|
94 |
with open("Output.json", "w") as json_file:
|
95 |
json.dump(output_data, json_file, indent=4)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Streamlit component to display the quiz and handle responses
|
98 |
def show_mbti_quiz():
|
99 |
st.title('FlexTemp Personality Test')
|
@@ -120,9 +142,9 @@ def show_mbti_quiz():
|
|
120 |
mbti_type_classic = classic_mbti_weighted(responses)
|
121 |
st.write(f"Your MBTI type based on weighted answers: {mbti_type_classic}")
|
122 |
|
123 |
-
#
|
|
|
124 |
if api_key:
|
125 |
-
# Run the LLM (GPT-4, for example) model to generate a personality type.
|
126 |
prompt = f"""
|
127 |
Determine a person's personality type based on their answers to the following Myers-Briggs Type Indicator (MBTI) questions:
|
128 |
The person has answered the following questions:
|
@@ -131,7 +153,7 @@ def show_mbti_quiz():
|
|
131 |
"""
|
132 |
try:
|
133 |
response = openai.ChatCompletion.create(
|
134 |
-
model="gpt-
|
135 |
messages=[{"role": "system", "content": "You are a helpful assistant."},
|
136 |
{"role": "user", "content": prompt}]
|
137 |
)
|
@@ -144,6 +166,17 @@ def show_mbti_quiz():
|
|
144 |
save_responses_to_json(participant_name, responses)
|
145 |
save_personality_to_output_json(participant_name, mbti_type_classic, mbti_type_llm)
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with open("Output.json", "r") as json_file:
|
148 |
json_data = json_file.read()
|
149 |
|
@@ -171,8 +204,7 @@ def show_mbti_quiz():
|
|
171 |
def main():
|
172 |
# Add instructions to the sidebar
|
173 |
with st.sidebar.expander("How This App Works", expanded=False):
|
174 |
-
st.write("""
|
175 |
-
### FlexTemp Personality Test
|
176 |
This app is designed to help you determine your MBTI personality type based on your answers to a series of questions. The process works as follows:
|
177 |
1. **Weighted MBTI Scoring**:
|
178 |
- Each question corresponds to a trait in the MBTI system.
|
@@ -182,11 +214,11 @@ def main():
|
|
182 |
- Optionally, you can also get your MBTI type based on the answers using a language model (LLM) like GPT-4. This provides an additional prediction that may offer insights into your personality.
|
183 |
- The LLM is trained on vast amounts of data and can generate responses based on patterns from psychological research and real-world interactions.
|
184 |
""")
|
185 |
-
|
186 |
if api_key:
|
187 |
show_mbti_quiz()
|
188 |
else:
|
189 |
st.info("Please enter your OpenAI API Key to begin the quiz.")
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import openai
|
3 |
import json
|
4 |
+
from fpdf import FPDF
|
|
|
5 |
|
6 |
# Load the OpenAI API Key
|
7 |
api_key = st.text_input('Enter your OpenAI API Key', type="password")
|
|
|
77 |
"responses": [{"text": question["text"], "answer": response} for question, response in zip(questions, responses)]
|
78 |
}
|
79 |
|
|
|
80 |
with open("UserChoices.json", "w") as json_file:
|
81 |
json.dump(user_data, json_file, indent=4)
|
82 |
|
|
|
88 |
"mbti_type_llm": mbti_type_llm
|
89 |
}
|
90 |
|
|
|
91 |
with open("Output.json", "w") as json_file:
|
92 |
json.dump(output_data, json_file, indent=4)
|
93 |
|
94 |
+
# Function to generate PDF report
|
95 |
+
def generate_pdf_report(username, mbti_type_classic, mbti_type_llm):
|
96 |
+
pdf = FPDF()
|
97 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
98 |
+
pdf.add_page()
|
99 |
+
|
100 |
+
# Set title
|
101 |
+
pdf.set_font('Arial', 'B', 16)
|
102 |
+
pdf.cell(200, 10, txt="MBTI Personality Report", ln=True, align='C')
|
103 |
+
|
104 |
+
# Add participant information
|
105 |
+
pdf.ln(10)
|
106 |
+
pdf.set_font('Arial', '', 12)
|
107 |
+
pdf.cell(200, 10, txt=f"Participant Name: {username}", ln=True)
|
108 |
+
|
109 |
+
# Add MBTI types
|
110 |
+
pdf.ln(10)
|
111 |
+
pdf.cell(200, 10, txt=f"Your MBTI type based on weighted answers: {mbti_type_classic}", ln=True)
|
112 |
+
pdf.cell(200, 10, txt=f"Your MBTI type according to AI: {mbti_type_llm}", ln=True)
|
113 |
+
|
114 |
+
# Output the PDF
|
115 |
+
pdf_output = "MBTI_Personality_Report.pdf"
|
116 |
+
pdf.output(pdf_output)
|
117 |
+
return pdf_output
|
118 |
+
|
119 |
# Streamlit component to display the quiz and handle responses
|
120 |
def show_mbti_quiz():
|
121 |
st.title('FlexTemp Personality Test')
|
|
|
142 |
mbti_type_classic = classic_mbti_weighted(responses)
|
143 |
st.write(f"Your MBTI type based on weighted answers: {mbti_type_classic}")
|
144 |
|
145 |
+
# LLM-based prediction
|
146 |
+
mbti_type_llm = ""
|
147 |
if api_key:
|
|
|
148 |
prompt = f"""
|
149 |
Determine a person's personality type based on their answers to the following Myers-Briggs Type Indicator (MBTI) questions:
|
150 |
The person has answered the following questions:
|
|
|
153 |
"""
|
154 |
try:
|
155 |
response = openai.ChatCompletion.create(
|
156 |
+
model="gpt-4",
|
157 |
messages=[{"role": "system", "content": "You are a helpful assistant."},
|
158 |
{"role": "user", "content": prompt}]
|
159 |
)
|
|
|
166 |
save_responses_to_json(participant_name, responses)
|
167 |
save_personality_to_output_json(participant_name, mbti_type_classic, mbti_type_llm)
|
168 |
|
169 |
+
# Generate PDF report and offer it as a download
|
170 |
+
pdf_report = generate_pdf_report(participant_name, mbti_type_classic, mbti_type_llm)
|
171 |
+
with open(pdf_report, "rb") as file:
|
172 |
+
st.download_button(
|
173 |
+
label="Download Generated Report (PDF)",
|
174 |
+
data=file,
|
175 |
+
file_name="MBTI_Personality_Report.pdf",
|
176 |
+
mime="application/pdf"
|
177 |
+
)
|
178 |
+
|
179 |
+
# Provide the other download buttons
|
180 |
with open("Output.json", "r") as json_file:
|
181 |
json_data = json_file.read()
|
182 |
|
|
|
204 |
def main():
|
205 |
# Add instructions to the sidebar
|
206 |
with st.sidebar.expander("How This App Works", expanded=False):
|
207 |
+
st.write("""### FlexTemp Personality Test
|
|
|
208 |
This app is designed to help you determine your MBTI personality type based on your answers to a series of questions. The process works as follows:
|
209 |
1. **Weighted MBTI Scoring**:
|
210 |
- Each question corresponds to a trait in the MBTI system.
|
|
|
214 |
- Optionally, you can also get your MBTI type based on the answers using a language model (LLM) like GPT-4. This provides an additional prediction that may offer insights into your personality.
|
215 |
- The LLM is trained on vast amounts of data and can generate responses based on patterns from psychological research and real-world interactions.
|
216 |
""")
|
217 |
+
|
218 |
if api_key:
|
219 |
show_mbti_quiz()
|
220 |
else:
|
221 |
st.info("Please enter your OpenAI API Key to begin the quiz.")
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
+
main()
|