Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
|
|
2 |
import openai
|
3 |
import json
|
4 |
import os
|
5 |
-
from fpdf import FPDF
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
# Load the OpenAI API Key
|
@@ -95,28 +94,6 @@ def save_personality_to_output_json(username, mbti_type_classic, mbti_type_llm):
|
|
95 |
with open("Output.json", "w") as json_file:
|
96 |
json.dump(output_data, json_file, indent=4)
|
97 |
|
98 |
-
# Function to generate PDF
|
99 |
-
def generate_pdf(mbti_type_classic, mbti_type_llm, participant_name):
|
100 |
-
pdf = FPDF()
|
101 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
102 |
-
pdf.add_page()
|
103 |
-
|
104 |
-
pdf.set_font("Arial", size=16, style="B")
|
105 |
-
pdf.cell(200, 10, txt="FlexTemp Personality Test Results", ln=True, align="C")
|
106 |
-
|
107 |
-
pdf.ln(10)
|
108 |
-
pdf.set_font("Arial", size=12)
|
109 |
-
|
110 |
-
pdf.cell(200, 10, txt=f"Name: {participant_name}", ln=True)
|
111 |
-
pdf.cell(200, 10, txt=f"Your MBTI type based on weighted answers: {mbti_type_classic}", ln=True)
|
112 |
-
pdf.cell(200, 10, txt=f"Your MBTI type according to AI: {mbti_type_llm}", ln=True)
|
113 |
-
|
114 |
-
# Save the PDF to a file
|
115 |
-
pdf_output = f"{participant_name}_mbti_results.pdf"
|
116 |
-
pdf.output(pdf_output)
|
117 |
-
|
118 |
-
return pdf_output
|
119 |
-
|
120 |
# Streamlit component to display the quiz and handle responses
|
121 |
def show_mbti_quiz():
|
122 |
st.title('FlexTemp Personality Test')
|
@@ -144,7 +121,6 @@ def show_mbti_quiz():
|
|
144 |
st.write(f"Your MBTI type based on weighted answers: {mbti_type_classic}")
|
145 |
|
146 |
# You can add LLM-based prediction if needed here (example OpenAI-based model)
|
147 |
-
mbti_type_llm = ""
|
148 |
if api_key:
|
149 |
# Run the LLM (GPT-4, for example) model to generate a personality type.
|
150 |
prompt = f"""
|
@@ -155,7 +131,7 @@ def show_mbti_quiz():
|
|
155 |
"""
|
156 |
try:
|
157 |
response = openai.ChatCompletion.create(
|
158 |
-
model="gpt-
|
159 |
messages=[{"role": "system", "content": "You are a helpful assistant."},
|
160 |
{"role": "user", "content": prompt}]
|
161 |
)
|
@@ -168,17 +144,6 @@ def show_mbti_quiz():
|
|
168 |
save_responses_to_json(participant_name, responses)
|
169 |
save_personality_to_output_json(participant_name, mbti_type_classic, mbti_type_llm)
|
170 |
|
171 |
-
# Generate and provide PDF download
|
172 |
-
pdf_output = generate_pdf(mbti_type_classic, mbti_type_llm, participant_name)
|
173 |
-
with open(pdf_output, "rb") as pdf_file:
|
174 |
-
st.download_button(
|
175 |
-
label="Download your MBTI results (PDF)",
|
176 |
-
data=pdf_file,
|
177 |
-
file_name=pdf_output,
|
178 |
-
mime="application/pdf"
|
179 |
-
)
|
180 |
-
|
181 |
-
# Provide options to download the JSON files
|
182 |
with open("Output.json", "r") as json_file:
|
183 |
json_data = json_file.read()
|
184 |
|
@@ -206,7 +171,7 @@ def show_mbti_quiz():
|
|
206 |
def main():
|
207 |
# Add instructions to the sidebar
|
208 |
with st.sidebar.expander("How This App Works", expanded=False):
|
209 |
-
st.write("""
|
210 |
### FlexTemp Personality Test
|
211 |
This app is designed to help you determine your MBTI personality type based on your answers to a series of questions. The process works as follows:
|
212 |
1. **Weighted MBTI Scoring**:
|
@@ -224,4 +189,4 @@ def main():
|
|
224 |
st.info("Please enter your OpenAI API Key to begin the quiz.")
|
225 |
|
226 |
if __name__ == "__main__":
|
227 |
-
main()
|
|
|
2 |
import openai
|
3 |
import json
|
4 |
import os
|
|
|
5 |
from dotenv import load_dotenv
|
6 |
|
7 |
# Load the OpenAI API Key
|
|
|
94 |
with open("Output.json", "w") as json_file:
|
95 |
json.dump(output_data, json_file, indent=4)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Streamlit component to display the quiz and handle responses
|
98 |
def show_mbti_quiz():
|
99 |
st.title('FlexTemp Personality Test')
|
|
|
121 |
st.write(f"Your MBTI type based on weighted answers: {mbti_type_classic}")
|
122 |
|
123 |
# You can add LLM-based prediction if needed here (example OpenAI-based model)
|
|
|
124 |
if api_key:
|
125 |
# Run the LLM (GPT-4, for example) model to generate a personality type.
|
126 |
prompt = f"""
|
|
|
131 |
"""
|
132 |
try:
|
133 |
response = openai.ChatCompletion.create(
|
134 |
+
model="gpt-4o",
|
135 |
messages=[{"role": "system", "content": "You are a helpful assistant."},
|
136 |
{"role": "user", "content": prompt}]
|
137 |
)
|
|
|
144 |
save_responses_to_json(participant_name, responses)
|
145 |
save_personality_to_output_json(participant_name, mbti_type_classic, mbti_type_llm)
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with open("Output.json", "r") as json_file:
|
148 |
json_data = json_file.read()
|
149 |
|
|
|
171 |
def main():
|
172 |
# Add instructions to the sidebar
|
173 |
with st.sidebar.expander("How This App Works", expanded=False):
|
174 |
+
st.write("""
|
175 |
### FlexTemp Personality Test
|
176 |
This app is designed to help you determine your MBTI personality type based on your answers to a series of questions. The process works as follows:
|
177 |
1. **Weighted MBTI Scoring**:
|
|
|
189 |
st.info("Please enter your OpenAI API Key to begin the quiz.")
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
+
main()
|