Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import fitz # PyMuPDF
|
|
4 |
import numpy as np
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
from io import BytesIO
|
7 |
-
import time
|
8 |
|
9 |
# Function to extract text from the uploaded PDF file
|
10 |
def extract_pdf_text(pdf_file):
|
@@ -25,21 +24,28 @@ def get_embeddings(texts):
|
|
25 |
|
26 |
# Function to get the most relevant context from the PDF for the query
|
27 |
def get_relevant_context(pdf_text, query, num_contexts=3):
|
|
|
28 |
pdf_text_chunks = [pdf_text[i:i+1500] for i in range(0, len(pdf_text), 1500)]
|
|
|
29 |
pdf_embeddings = get_embeddings(pdf_text_chunks)
|
30 |
query_embedding = get_embeddings([query])[0]
|
|
|
|
|
31 |
similarities = cosine_similarity([query_embedding], pdf_embeddings)
|
32 |
top_indices = similarities[0].argsort()[-num_contexts:][::-1]
|
|
|
|
|
33 |
relevant_context = " ".join([pdf_text_chunks[i] for i in top_indices])
|
34 |
return relevant_context
|
35 |
|
36 |
# Function to generate a response from GPT-4 chat model
|
37 |
-
def generate_response(context, question
|
38 |
-
messages = [
|
39 |
-
|
40 |
-
|
|
|
41 |
response = openai.ChatCompletion.create(
|
42 |
-
model="gpt-4o-mini",
|
43 |
messages=messages,
|
44 |
max_tokens=1200,
|
45 |
temperature=0.7,
|
@@ -51,44 +57,44 @@ def is_irrelevant_question(question):
|
|
51 |
irrelevant_keywords = ["life", "love", "meaning", "future", "philosophy"]
|
52 |
return any(keyword in question.lower() for keyword in irrelevant_keywords)
|
53 |
|
54 |
-
# Streamlit
|
55 |
def main():
|
56 |
st.title("📄 GPT-4 Research Paper Chatbot")
|
57 |
-
st.write("Ask any question related to the GPT-4 paper, and I'll try to answer it!")
|
58 |
-
|
|
|
59 |
openai_api_key = st.text_input("🔑 Enter your OpenAI API Key:", type="password")
|
|
|
60 |
if openai_api_key:
|
61 |
openai.api_key = openai_api_key
|
62 |
st.success("API Key successfully set!")
|
63 |
|
|
|
64 |
pdf_file = st.file_uploader("📂 Upload GPT-4 Research Paper PDF", type="pdf")
|
|
|
65 |
if pdf_file is not None:
|
66 |
-
|
67 |
-
|
68 |
-
st.session_state.chat_history = []
|
69 |
-
st.session_state.conversation_active = True
|
70 |
-
|
71 |
st.write("✅ PDF content loaded successfully! Start asking questions.")
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
st.rerun()
|
79 |
-
|
80 |
-
if question and st.session_state.conversation_active:
|
81 |
if is_irrelevant_question(question):
|
82 |
-
|
83 |
else:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
else:
|
91 |
st.warning("⚠️ Please enter your OpenAI API Key to use the chatbot.")
|
92 |
|
93 |
if __name__ == "__main__":
|
94 |
-
main()
|
|
|
4 |
import numpy as np
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
from io import BytesIO
|
|
|
7 |
|
8 |
# Function to extract text from the uploaded PDF file
|
9 |
def extract_pdf_text(pdf_file):
|
|
|
24 |
|
25 |
# Function to get the most relevant context from the PDF for the query
|
26 |
def get_relevant_context(pdf_text, query, num_contexts=3):
|
27 |
+
# Split the PDF text into chunks for better matching
|
28 |
pdf_text_chunks = [pdf_text[i:i+1500] for i in range(0, len(pdf_text), 1500)]
|
29 |
+
# Get embeddings for both the document and the query
|
30 |
pdf_embeddings = get_embeddings(pdf_text_chunks)
|
31 |
query_embedding = get_embeddings([query])[0]
|
32 |
+
|
33 |
+
# Compute cosine similarity between query and document chunks
|
34 |
similarities = cosine_similarity([query_embedding], pdf_embeddings)
|
35 |
top_indices = similarities[0].argsort()[-num_contexts:][::-1]
|
36 |
+
|
37 |
+
# Combine the top context pieces
|
38 |
relevant_context = " ".join([pdf_text_chunks[i] for i in top_indices])
|
39 |
return relevant_context
|
40 |
|
41 |
# Function to generate a response from GPT-4 chat model
|
42 |
+
def generate_response(context, question):
|
43 |
+
messages = [
|
44 |
+
{"role": "system", "content": "You are a helpful assistant expert on GPT-4."},
|
45 |
+
{"role": "user", "content": f"Context: {context}\nQuestion: {question}"}
|
46 |
+
]
|
47 |
response = openai.ChatCompletion.create(
|
48 |
+
model="gpt-4o-mini", # Use the GPT-4 chat model
|
49 |
messages=messages,
|
50 |
max_tokens=1200,
|
51 |
temperature=0.7,
|
|
|
57 |
irrelevant_keywords = ["life", "love", "meaning", "future", "philosophy"]
|
58 |
return any(keyword in question.lower() for keyword in irrelevant_keywords)
|
59 |
|
60 |
+
# Streamlit UI
|
61 |
def main():
|
62 |
st.title("📄 GPT-4 Research Paper Chatbot")
|
63 |
+
st.write("💬 Ask any question related to the GPT-4 paper, and I'll try to answer it!")
|
64 |
+
|
65 |
+
# User input: OpenAI API key
|
66 |
openai_api_key = st.text_input("🔑 Enter your OpenAI API Key:", type="password")
|
67 |
+
|
68 |
if openai_api_key:
|
69 |
openai.api_key = openai_api_key
|
70 |
st.success("API Key successfully set!")
|
71 |
|
72 |
+
# Upload the PDF file
|
73 |
pdf_file = st.file_uploader("📂 Upload GPT-4 Research Paper PDF", type="pdf")
|
74 |
+
|
75 |
if pdf_file is not None:
|
76 |
+
# Extract text from the uploaded PDF
|
77 |
+
pdf_text = extract_pdf_text(pdf_file)
|
|
|
|
|
|
|
78 |
st.write("✅ PDF content loaded successfully! Start asking questions.")
|
79 |
+
|
80 |
+
# User input: the question they want to ask
|
81 |
+
question = st.text_input("Ask your question:")
|
82 |
+
|
83 |
+
if question:
|
84 |
+
# Check if the question is irrelevant
|
|
|
|
|
|
|
85 |
if is_irrelevant_question(question):
|
86 |
+
st.write("Sorry, I don't know the answer to this question. I am an expert on GPT-4 knowledge.")
|
87 |
else:
|
88 |
+
# Get the most relevant context from the document
|
89 |
+
relevant_context = get_relevant_context(pdf_text, question)
|
90 |
+
|
91 |
+
# Generate the response from GPT-4 chat model
|
92 |
+
answer = generate_response(relevant_context, question)
|
93 |
+
|
94 |
+
# Display the answer
|
95 |
+
st.write(f"🤖 Answer: {answer}")
|
96 |
else:
|
97 |
st.warning("⚠️ Please enter your OpenAI API Key to use the chatbot.")
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
+
main()
|