File size: 6,327 Bytes
8b97f99
 
 
 
 
d60058e
8b97f99
 
d60058e
8b97f99
 
 
 
 
 
 
 
 
 
 
 
63271b3
 
 
 
 
 
8b97f99
 
 
 
 
 
 
 
 
 
 
 
 
e6cee82
 
 
8b97f99
e96901a
 
 
 
8b97f99
 
 
 
 
e6cee82
 
 
e96901a
8b97f99
 
 
 
e6cee82
 
8b97f99
 
 
 
e96901a
8b97f99
e96901a
8b97f99
e96901a
 
 
 
8b97f99
 
 
 
 
e6cee82
 
8b97f99
 
 
 
 
 
e96901a
 
 
 
8b97f99
 
 
d60058e
8b97f99
d60058e
8b97f99
 
 
 
 
 
 
 
 
 
 
 
 
 
e6cee82
8b97f99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6cee82
d60058e
e6cee82
 
 
 
 
 
d60058e
e6cee82
 
 
8b97f99
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import openai
import fitz  # PyMuPDF for PDF processing
import base64

# Variable to store API key
api_key = ""

# Function to update API key
def set_api_key(key):
    global api_key
    api_key = key
    return "API Key Set Successfully!"

# Function to interact with OpenAI API
def query_openai(messages, temperature, top_p, max_output_tokens):
    if not api_key:
        return "Please enter your OpenAI API key first."

    try:
        openai.api_key = api_key  # Set API key dynamically

        # Ensure numeric values for OpenAI parameters
        temperature = float(temperature) if temperature else 1.0
        top_p = float(top_p) if top_p else 1.0
        max_output_tokens = int(max_output_tokens) if max_output_tokens else 1024

        response = openai.ChatCompletion.create(
            model="gpt-4.5-preview",
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_tokens=max_output_tokens
        )
        return response["choices"][0]["message"]["content"]
    except Exception as e:
        return f"Error: {str(e)}"

# Function to process image URL input
def image_url_chat(image_url, text_query, temperature, top_p, max_output_tokens):
    if not image_url or not text_query:
        return "Please provide an image URL and a query."

    messages = [
        {"role": "user", "content": [
            {"type": "image_url", "image_url": {"url": image_url}},  # Corrected format
            {"type": "text", "text": text_query}
        ]}
    ]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to process text input
def text_chat(text_query, temperature, top_p, max_output_tokens):
    if not text_query:
        return "Please enter a query."

    messages = [{"role": "user", "content": [{"type": "text", "text": text_query}]}]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to process uploaded image input
def image_chat(image_file, text_query, temperature, top_p, max_output_tokens):
    if image_file is None or not text_query:
        return "Please upload an image and provide a query."

    # Encode image as base64
    with open(image_file, "rb") as img:
        base64_image = base64.b64encode(img.read()).decode("utf-8")

    image_data = f"data:image/jpeg;base64,{base64_image}"

    messages = [
        {"role": "user", "content": [
            {"type": "image_url", "image_url": {"url": image_data}},  # Fixed format
            {"type": "text", "text": text_query}
        ]}
    ]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to process uploaded PDF input
def pdf_chat(pdf_file, text_query, temperature, top_p, max_output_tokens):
    if pdf_file is None or not text_query:
        return "Please upload a PDF and provide a query."

    # Extract text from the first few pages
    doc = fitz.open(pdf_file)
    text = "\n".join([page.get_text("text") for page in doc][:5])  # Limit extraction for performance

    messages = [
        {"role": "user", "content": [
            {"type": "text", "text": text},  # Fixed format
            {"type": "text", "text": text_query}
        ]}
    ]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to clear the chat (Fix: Returns the correct number of outputs)
def clear_chat():
    return "", "", "", "", "", "", "", None, "", None, "", 1.0, 1.0, 1024

# Gradio UI Layout
with gr.Blocks() as demo:
    gr.Markdown("## GPT-4.5 Preview Chatbot")
    
    # API Key Input
    with gr.Row():
        api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password")
        api_key_button = gr.Button("Set API Key")
        api_key_output = gr.Textbox(label="API Key Status", interactive=False)

    with gr.Row():
        temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature")
        top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P")
        max_output_tokens = gr.Slider(0, 16384, value=1024, step=512, label="Max Output Tokens")
    
    with gr.Tabs():
        with gr.Tab("Image URL Chat"):
            image_url = gr.Textbox(label="Enter Image URL")
            image_query = gr.Textbox(label="Ask about the Image")
            image_url_output = gr.Textbox(label="Response", interactive=False)
            image_url_button = gr.Button("Ask")
        
        with gr.Tab("Text Chat"):
            text_query = gr.Textbox(label="Enter your query")
            text_output = gr.Textbox(label="Response", interactive=False)
            text_button = gr.Button("Ask")
        
        with gr.Tab("Image Chat"):
            image_upload = gr.File(label="Upload an Image", type="filepath")
            image_text_query = gr.Textbox(label="Ask about the uploaded image")
            image_output = gr.Textbox(label="Response", interactive=False)
            image_button = gr.Button("Ask")
        
        with gr.Tab("PDF Chat"):
            pdf_upload = gr.File(label="Upload a PDF", type="filepath")
            pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF")
            pdf_output = gr.Textbox(label="Response", interactive=False)
            pdf_button = gr.Button("Ask")

    # Clear chat button
    clear_button = gr.Button("Clear Chat")

    # Button Click Actions
    api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output])
    image_url_button.click(image_url_chat, [image_url, image_query, temperature, top_p, max_output_tokens], image_url_output)
    text_button.click(text_chat, [text_query, temperature, top_p, max_output_tokens], text_output)
    image_button.click(image_chat, [image_upload, image_text_query, temperature, top_p, max_output_tokens], image_output)
    pdf_button.click(pdf_chat, [pdf_upload, pdf_text_query, temperature, top_p, max_output_tokens], pdf_output)

    # Fix: Clear button resets all necessary fields correctly
    clear_button.click(
        clear_chat,
        outputs=[
            image_url, image_query, image_url_output, 
            text_query, text_output, 
            image_text_query, image_output, 
            pdf_upload, pdf_text_query, pdf_output, 
            temperature, top_p, max_output_tokens
        ]
    )

# Launch Gradio App
if __name__ == "__main__":
    demo.launch()