File size: 5,473 Bytes
8b97f99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import openai
import fitz  # PyMuPDF for PDF processing
import base64

# Variable to store the API key
api_key = ""

# Function to update the API key
def set_api_key(key):
    global api_key
    api_key = key
    return "API Key Set Successfully!"

# Function to interact with OpenAI API
def query_openai(messages, temperature, top_p, max_output_tokens):
    if not api_key:
        return "Please enter your OpenAI API key first."

    try:
        openai.api_key = api_key  # Set API key dynamically
        response = openai.ChatCompletion.create(
            model="gpt-4.5-preview",
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_tokens=max_output_tokens
        )
        return response["choices"][0]["message"]["content"]
    except Exception as e:
        return f"Error: {str(e)}"

# Function to process image URL input
def image_url_chat(image_url, text_query, temperature, top_p, max_output_tokens):
    messages = [
        {"role": "user", "content": [{"type": "input_image", "image_url": image_url}, {"type": "input_text", "text": text_query}]}
    ]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to process text input
def text_chat(text_query, temperature, top_p, max_output_tokens):
    messages = [{"role": "user", "content": text_query}]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to process uploaded image input
def image_chat(image_file, text_query, temperature, top_p, max_output_tokens):
    if image_file is None:
        return "Please upload an image."

    # Encode image as base64
    with open(image_file, "rb") as img:
        base64_image = base64.b64encode(img.read()).decode("utf-8")
    
    image_data = f"data:image/jpeg;base64,{base64_image}"
    
    messages = [
        {"role": "user", "content": [{"type": "input_image", "image_url": image_data}, {"type": "input_text", "text": text_query}]}
    ]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to process uploaded PDF input
def pdf_chat(pdf_file, text_query, temperature, top_p, max_output_tokens):
    if pdf_file is None:
        return "Please upload a PDF."

    # Extract text from the first few pages
    doc = fitz.open(pdf_file)
    text = "\n".join([page.get_text("text") for page in doc][:5])  # Limit extraction for performance

    messages = [
        {"role": "user", "content": [{"type": "input_text", "text": text}, {"type": "input_text", "text": text_query}]}
    ]
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to clear the chat
def clear_chat():
    return "", "", None, "", None, "", 1.0, 1.0, 1024

# Gradio UI Layout
with gr.Blocks() as demo:
    gr.Markdown("## GPT-4.5 Preview Chatbot")
    
    # API Key Input
    with gr.Row():
        api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password")
        api_key_button = gr.Button("Set API Key")
        api_key_output = gr.Textbox(label="API Key Status", interactive=False)

    with gr.Row():
        temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature")
        top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P")
        max_output_tokens = gr.Slider(0, 16384, value=1024, step=512, label="Max Output Tokens")
    
    with gr.Tabs():
        with gr.Tab("Image URL Chat"):
            image_url = gr.Textbox(label="Enter Image URL")
            image_query = gr.Textbox(label="Ask about the Image")
            image_url_output = gr.Textbox(label="Response", interactive=False)
            image_url_button = gr.Button("Ask")
        
        with gr.Tab("Text Chat"):
            text_query = gr.Textbox(label="Enter your query")
            text_output = gr.Textbox(label="Response", interactive=False)
            text_button = gr.Button("Ask")
        
        with gr.Tab("Image Chat"):
            image_upload = gr.File(label="Upload an Image", type="filepath")
            image_text_query = gr.Textbox(label="Ask about the uploaded image")
            image_output = gr.Textbox(label="Response", interactive=False)
            image_button = gr.Button("Ask")
        
        with gr.Tab("PDF Chat"):
            pdf_upload = gr.File(label="Upload a PDF", type="filepath")
            pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF")
            pdf_output = gr.Textbox(label="Response", interactive=False)
            pdf_button = gr.Button("Ask")

    # Clear chat button
    clear_button = gr.Button("Clear Chat")

    # Button Click Actions
    api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output])
    image_url_button.click(image_url_chat, [image_url, image_query, temperature, top_p, max_output_tokens], image_url_output)
    text_button.click(text_chat, [text_query, temperature, top_p, max_output_tokens], text_output)
    image_button.click(image_chat, [image_upload, image_text_query, temperature, top_p, max_output_tokens], image_output)
    pdf_button.click(pdf_chat, [pdf_upload, pdf_text_query, temperature, top_p, max_output_tokens], pdf_output)
    clear_button.click(clear_chat, outputs=[image_url, image_query, image_url_output, text_query, text_output, image_upload, image_text_query, image_output, pdf_upload, pdf_text_query, pdf_output, temperature, top_p, max_output_tokens])

# Launch Gradio App
if __name__ == "__main__":
    demo.launch()