File size: 10,942 Bytes
8b97f99 ec333f1 8b97f99 c2740a5 8b97f99 c2740a5 8b97f99 c2740a5 8b97f99 c2740a5 8b97f99 b06076e 63271b3 8b97f99 b06076e 8b97f99 c2740a5 8b97f99 c2740a5 8b97f99 b06076e 3617d08 b06076e 3617d08 b06076e a169fea b06076e f386ba9 b06076e ec333f1 b06076e ec333f1 f386ba9 ec333f1 a169fea 8b97f99 a169fea 8b97f99 b06076e 30d63ae b06076e a0d1236 8b97f99 7057cb9 8b97f99 b06076e 3617d08 b06076e 8b97f99 b06076e 8b97f99 c2740a5 28eacfd b06076e 28eacfd b06076e 8b97f99 c2740a5 28eacfd b06076e 8b97f99 c2740a5 28eacfd a169fea b06076e ec333f1 28eacfd ec333f1 30d63ae a169fea 30d63ae 8b97f99 30d63ae 8b97f99 b06076e f386ba9 28eacfd a169fea 28eacfd a169fea 30d63ae a169fea b06076e a169fea b06076e 8b97f99 a723167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import openai
import fitz # PyMuPDF for PDF processing
import base64
import io
# Variable to store API key
api_key = ""
# Function to update API key
def set_api_key(key):
global api_key
api_key = key
return "API Key Set Successfully!"
# Function to interact with OpenAI API
def query_openai(messages, temperature, top_p, max_output_tokens):
if not api_key:
return "Please enter your OpenAI API key first."
try:
openai.api_key = api_key # Set API key dynamically
# Ensure numeric values for OpenAI parameters
temperature = float(temperature) if temperature else 1.0
top_p = float(top_p) if top_p else 1.0
max_output_tokens = int(max_output_tokens) if max_output_tokens else 2048
response = openai.ChatCompletion.create(
model="gpt-4.5-preview",
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_output_tokens
)
return response["choices"][0]["message"]["content"]
except Exception as e:
return f"Error: {str(e)}"
# Function to process image URL input
def image_url_chat(image_url, text_query, temperature, top_p, max_output_tokens):
if not image_url or not text_query:
return "Please provide an image URL and a query."
messages = [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": text_query}
]},
]
return query_openai(messages, temperature, top_p, max_output_tokens)
# Function to process text input
def text_chat(text_query, temperature, top_p, max_output_tokens):
if not text_query:
return "Please enter a query."
messages = [{"role": "user", "content": [{"type": "text", "text": text_query}]}]
return query_openai(messages, temperature, top_p, max_output_tokens)
# Function to process uploaded image input
def image_chat(image_file, text_query, temperature, top_p, max_output_tokens):
if image_file is None or not text_query:
return "Please upload an image and provide a query."
# Encode image as base64
with open(image_file, "rb") as img:
base64_image = base64.b64encode(img.read()).decode("utf-8")
image_data = f"data:image/jpeg;base64,{base64_image}"
messages = [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": image_data}},
{"type": "text", "text": text_query}
]},
]
return query_openai(messages, temperature, top_p, max_output_tokens)
# Function to process uploaded PDF input
def pdf_chat(pdf_file, text_query, temperature, top_p, max_output_tokens):
if pdf_file is None or not text_query:
return "Please upload a PDF and provide a query."
try:
# Extract text from all pages of the PDF
doc = fitz.open(pdf_file.name)
text = "\n".join([page.get_text("text") for page in doc]) # Extract text from all pages
# If no text found, return an error
if not text.strip():
return "No text found in the PDF."
# Create the query message with the extracted text and the user's query
messages = [
{"role": "user", "content": [
{"type": "text", "text": text}, # The extracted text from the PDF
{"type": "text", "text": text_query}
]},
]
return query_openai(messages, temperature, top_p, max_output_tokens)
except Exception as e:
return f"Error processing the PDF: {str(e)}"
# Function to process audio file and convert to text
def process_audio(audio_file, query, temperature, top_p, max_output_tokens):
# Modified to handle numpy array or filepath depending on Audio component output
try:
if isinstance(audio_file, tuple): # In case audio is returned as tuple (numpy array, sample rate)
# Convert numpy array to WAV bytes in memory
import numpy as np
import scipy.io.wavfile as wav
audio_data, sample_rate = audio_file
buffer = io.BytesIO()
wav.write(buffer, sample_rate, audio_data)
buffer.seek(0)
audio_binary = buffer.read()
else: # Filepath
with open(audio_file, "rb") as f:
audio_binary = f.read()
# Transcribe the audio
transcription = transcribe_audio(audio_binary, api_key)
# Use the transcription and query to get a response
messages = [
{"role": "user", "content": [
{"type": "text", "text": f"Transcription: {transcription}"},
{"type": "text", "text": f"Query: {query}"}
]},
]
return query_openai(messages, temperature, top_p, max_output_tokens)
except Exception as e:
return f"Error processing audio: {str(e)}"
# Function to transcribe audio to text using OpenAI Whisper API
def transcribe_audio(audio_binary, openai_api_key):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
try:
# Use the correct transcription API call
audio_file_obj = io.BytesIO(audio_binary)
audio_file_obj.name = 'audio.wav' # Set a name for the file object (as OpenAI expects it)
# Transcribe the audio to text using OpenAI's whisper model
audio_file_transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1")
return audio_file_transcription.text
except Exception as e:
return f"Error transcribing audio: {str(e)}"
# Function to clear the chat
def clear_chat():
return "", "", "", "", "", "", "", None, "", None, "", None, "", None, "", 1.0, 1.0, 2048
# Gradio UI Layout
with gr.Blocks() as demo:
gr.Markdown("## GPT-4.5 Preview Chatbot")
# Accordion for explaining hyperparameters
with gr.Accordion("Hyperparameters", open=False):
gr.Markdown("""
### Temperature:
Controls the randomness of the model's output. A lower temperature makes the model more deterministic, while a higher temperature makes it more creative and varied.
### Top-P (Nucleus Sampling):
Controls the cumulative probability distribution from which the model picks the next word. A lower value makes the model more focused and deterministic, while a higher value increases randomness.
### Max Output Tokens:
Limits the number of tokens (words or subwords) the model can generate in its response. You can use this to control the length of the response.
""")
# API Key Input
with gr.Row():
api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password")
api_key_button = gr.Button("Set API Key", elem_id="api_key_button")
api_key_output = gr.Textbox(label="API Key Status", interactive=False)
with gr.Row():
temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature")
top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P")
max_output_tokens = gr.Slider(0, 16384, value=2048, step=512, label="Max Output Tokens")
with gr.Tabs():
with gr.Tab("Image URL Chat"):
image_url = gr.Textbox(label="Enter Image URL")
image_query = gr.Textbox(label="Ask about the Image")
image_url_output = gr.Textbox(label="Response", interactive=False)
image_url_button = gr.Button("Ask", elem_id="ask_button")
with gr.Tab("Text Chat"):
text_query = gr.Textbox(label="Enter your query")
text_output = gr.Textbox(label="Response", interactive=False)
text_button = gr.Button("Ask", elem_id="ask_button")
with gr.Tab("Image Chat"):
image_upload = gr.File(label="Upload an Image", type="filepath")
image_text_query = gr.Textbox(label="Ask about the uploaded image")
image_output = gr.Textbox(label="Response", interactive=False)
image_button = gr.Button("Ask", elem_id="ask_button")
with gr.Tab("PDF Chat"):
pdf_upload = gr.File(label="Upload a PDF", type="filepath")
pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF")
pdf_output = gr.Textbox(label="Response", interactive=False)
pdf_button = gr.Button("Ask", elem_id="ask_button")
with gr.Tab("Voice Chat (Upload)"):
audio_upload = gr.File(label="Upload an Audio File")
audio_query = gr.Textbox(label="Ask about the transcription")
audio_output = gr.Textbox(label="Response", interactive=False)
audio_button = gr.Button("Ask", elem_id="ask_button")
with gr.Tab("Voice(Record) Chat"):
# Fix: Changed type to "numpy" which is supported in your Gradio version
audio_record = gr.Audio(label="Record your voice", type="numpy")
audio_record_query = gr.Textbox(label="Ask about the transcription")
audio_record_output = gr.Textbox(label="Response", interactive=False)
audio_record_button = gr.Button("Ask", elem_id="ask_button")
# Clear chat button
clear_button = gr.Button("Clear Chat", elem_id="clear_chat_button")
# Button Click Actions
api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output])
image_url_button.click(image_url_chat, [image_url, image_query, temperature, top_p, max_output_tokens], image_url_output)
text_button.click(text_chat, [text_query, temperature, top_p, max_output_tokens], text_output)
image_button.click(image_chat, [image_upload, image_text_query, temperature, top_p, max_output_tokens], image_output)
pdf_button.click(pdf_chat, [pdf_upload, pdf_text_query, temperature, top_p, max_output_tokens], pdf_output)
# For Voice Chat (Upload)
audio_button.click(process_audio,
[audio_upload, audio_query, temperature, top_p, max_output_tokens],
audio_output)
# For Voice Chat (Record)
audio_record_button.click(process_audio,
[audio_record, audio_record_query, temperature, top_p, max_output_tokens],
audio_record_output)
# Clear button resets all necessary fields
clear_button.click(
clear_chat,
outputs=[
image_url, image_query, image_url_output,
text_query, text_output,
image_text_query, image_output,
pdf_upload, pdf_text_query, pdf_output,
audio_upload, audio_query, audio_output,
audio_record, audio_record_query, audio_record_output,
temperature, top_p, max_output_tokens
]
)
# Launch Gradio App
if __name__ == "__main__":
demo.launch() |