Update app.py
Browse files
app.py
CHANGED
@@ -1,388 +1,42 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
|
7 |
-
#
|
8 |
-
api_key = ""
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
global api_key
|
13 |
-
api_key = key
|
14 |
-
return "API Key Set Successfully!"
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
openai.api_key = api_key # Set API key dynamically
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
top_p = float(top_p) if top_p else 1.0
|
27 |
-
max_output_tokens = int(max_output_tokens) if max_output_tokens else 2048
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
temperature=temperature,
|
33 |
-
top_p=top_p,
|
34 |
-
max_tokens=max_output_tokens
|
35 |
-
)
|
36 |
-
return response["choices"][0]["message"]["content"]
|
37 |
-
except Exception as e:
|
38 |
-
return f"Error: {str(e)}"
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
if not image_url or not text_query:
|
43 |
-
return "Please provide an image URL and a query."
|
44 |
|
45 |
-
|
46 |
-
{"role": "user", "content": [
|
47 |
-
{"type": "image_url", "image_url": {"url": image_url}},
|
48 |
-
{"type": "text", "text": text_query}
|
49 |
-
]},
|
50 |
-
]
|
51 |
-
return query_openai(messages, temperature, top_p, max_output_tokens)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
-
messages = [{"role": "user", "content": [{"type": "text", "text": text_query}]}]
|
59 |
-
return query_openai(messages, temperature, top_p, max_output_tokens)
|
60 |
-
|
61 |
-
# Function to process uploaded image input
|
62 |
-
def image_chat(image_file, text_query, temperature, top_p, max_output_tokens):
|
63 |
-
if image_file is None or not text_query:
|
64 |
-
return "Please upload an image and provide a query."
|
65 |
-
|
66 |
-
# Encode image as base64
|
67 |
-
with open(image_file, "rb") as img:
|
68 |
-
base64_image = base64.b64encode(img.read()).decode("utf-8")
|
69 |
-
|
70 |
-
image_data = f"data:image/jpeg;base64,{base64_image}"
|
71 |
-
|
72 |
-
messages = [
|
73 |
-
{"role": "user", "content": [
|
74 |
-
{"type": "image_url", "image_url": {"url": image_data}},
|
75 |
-
{"type": "text", "text": text_query}
|
76 |
-
]},
|
77 |
-
]
|
78 |
-
return query_openai(messages, temperature, top_p, max_output_tokens)
|
79 |
-
|
80 |
-
# Function to process uploaded PDF input
|
81 |
-
def pdf_chat(pdf_file, text_query, temperature, top_p, max_output_tokens):
|
82 |
-
if pdf_file is None or not text_query:
|
83 |
-
return "Please upload a PDF and provide a query."
|
84 |
-
|
85 |
-
try:
|
86 |
-
# Extract text from all pages of the PDF
|
87 |
-
doc = fitz.open(pdf_file.name)
|
88 |
-
text = "\n".join([page.get_text("text") for page in doc]) # Extract text from all pages
|
89 |
-
|
90 |
-
# If no text found, return an error
|
91 |
-
if not text.strip():
|
92 |
-
return "No text found in the PDF."
|
93 |
-
|
94 |
-
# Create the query message with the extracted text and the user's query
|
95 |
-
messages = [
|
96 |
-
{"role": "user", "content": [
|
97 |
-
{"type": "text", "text": text}, # The extracted text from the PDF
|
98 |
-
{"type": "text", "text": text_query}
|
99 |
-
]},
|
100 |
-
]
|
101 |
-
return query_openai(messages, temperature, top_p, max_output_tokens)
|
102 |
-
|
103 |
-
except Exception as e:
|
104 |
-
return f"Error processing the PDF: {str(e)}"
|
105 |
-
|
106 |
-
# Function to transcribe audio to text using OpenAI Whisper API
|
107 |
-
def transcribe_audio(audio_binary, openai_api_key):
|
108 |
-
if not openai_api_key:
|
109 |
-
return "Error: No API key provided."
|
110 |
-
|
111 |
-
openai.api_key = openai_api_key
|
112 |
-
|
113 |
-
try:
|
114 |
-
# Use the correct transcription API call
|
115 |
-
audio_file_obj = io.BytesIO(audio_binary)
|
116 |
-
audio_file_obj.name = 'audio.wav' # Set a name for the file object (as OpenAI expects it)
|
117 |
-
|
118 |
-
# Transcribe the audio to text using OpenAI's whisper model
|
119 |
-
audio_file_transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1")
|
120 |
-
return audio_file_transcription.text
|
121 |
-
except Exception as e:
|
122 |
-
return f"Error transcribing audio: {str(e)}"
|
123 |
-
|
124 |
-
# Function to handle uploaded audio transcription
|
125 |
-
def process_uploaded_audio(audio_binary):
|
126 |
-
if not audio_binary:
|
127 |
-
return "Please upload an audio file first."
|
128 |
-
|
129 |
-
if not api_key:
|
130 |
-
return "Please enter your OpenAI API key first."
|
131 |
-
|
132 |
-
try:
|
133 |
-
transcription = transcribe_audio(audio_binary, api_key)
|
134 |
-
return transcription
|
135 |
-
except Exception as e:
|
136 |
-
return f"Error transcribing audio: {str(e)}"
|
137 |
-
|
138 |
-
# Function to handle recorded audio transcription
|
139 |
-
def process_recorded_audio(audio_path):
|
140 |
-
if not audio_path:
|
141 |
-
return "No audio recorded."
|
142 |
-
|
143 |
-
if not api_key:
|
144 |
-
return "Please enter your OpenAI API key first."
|
145 |
-
|
146 |
-
try:
|
147 |
-
with open(audio_path, "rb") as audio_file:
|
148 |
-
audio_binary = audio_file.read()
|
149 |
-
|
150 |
-
transcription = transcribe_audio(audio_binary, api_key)
|
151 |
-
return transcription
|
152 |
-
except Exception as e:
|
153 |
-
return f"Error transcribing recorded audio: {str(e)}"
|
154 |
-
|
155 |
-
# Function to process the voice chat queries
|
156 |
-
def process_voice_query(transcription, temperature, top_p, max_output_tokens):
|
157 |
-
if not transcription or transcription.startswith("Error") or transcription.startswith("Please"):
|
158 |
-
return "Please ensure audio is transcribed successfully first."
|
159 |
-
|
160 |
-
# Use the transcription as the query
|
161 |
-
messages = [{"role": "user", "content": [{"type": "text", "text": transcription}]}]
|
162 |
-
|
163 |
-
return query_openai(messages, temperature, top_p, max_output_tokens)
|
164 |
-
|
165 |
-
# Function to clear the chat - FIXED to return the correct types for file inputs
|
166 |
-
def clear_chat():
|
167 |
-
# For file components like gr.File and gr.Audio, we should return None
|
168 |
-
# For text components, return empty string
|
169 |
-
# For sliders, return default values
|
170 |
-
|
171 |
-
# The order must match exactly with the outputs in clear_button.click()
|
172 |
-
return (
|
173 |
-
"", # image_url (textbox)
|
174 |
-
"", # image_query (textbox)
|
175 |
-
"", # image_url_output (textbox)
|
176 |
-
"", # text_query (textbox)
|
177 |
-
"", # text_output (textbox)
|
178 |
-
"", # image_text_query (textbox)
|
179 |
-
"", # image_output (textbox)
|
180 |
-
None, # pdf_upload (file)
|
181 |
-
"", # pdf_text_query (textbox)
|
182 |
-
"", # pdf_output (textbox)
|
183 |
-
None, # audio_upload (file)
|
184 |
-
"", # upload_transcription (textbox)
|
185 |
-
"", # upload_audio_output (textbox)
|
186 |
-
None, # audio_recorder (audio)
|
187 |
-
"", # record_transcription (textbox)
|
188 |
-
"", # record_audio_output (textbox)
|
189 |
-
1.0, # temperature (slider)
|
190 |
-
1.0, # top_p (slider)
|
191 |
-
2048 # max_output_tokens (slider)
|
192 |
-
)
|
193 |
-
|
194 |
-
# Gradio UI Layout
|
195 |
-
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
196 |
-
gr.Markdown("## GPT-4.5 Preview Chatbot")
|
197 |
-
|
198 |
-
with gr.Accordion("How to Use This App!", open=False, elem_id="neuroscope-accordion"):
|
199 |
-
gr.Markdown("""
|
200 |
-
### Getting Started:
|
201 |
-
1. Enter your OpenAI API key in the field at the top and click "Set API Key"
|
202 |
-
2. Adjust the hyperparameters if needed (Temperature, Top-P, Max Output Tokens)
|
203 |
-
|
204 |
-
### Using the Different Tabs:
|
205 |
-
|
206 |
-
#### Image URL Chat
|
207 |
-
- Paste an image URL in the field
|
208 |
-
- Enter your question about the image
|
209 |
-
- Click "Ask" to get a response
|
210 |
-
|
211 |
-
#### Text Chat
|
212 |
-
- Simply type your query in the text field
|
213 |
-
- Click "Ask" to get a response
|
214 |
-
|
215 |
-
#### Image Chat
|
216 |
-
- Upload an image from your device
|
217 |
-
- Enter your question about the uploaded image
|
218 |
-
- Click "Ask" to get a response
|
219 |
-
|
220 |
-
#### PDF Chat
|
221 |
-
- Upload a PDF document
|
222 |
-
- Ask questions about the PDF content
|
223 |
-
- Click "Ask" to get a response
|
224 |
-
|
225 |
-
#### Voice Chat
|
226 |
-
- **Upload Audio:** Upload an audio file, click "Transcribe Audio", then click "Ask"
|
227 |
-
- **Record Audio:** Record your voice, click "Transcribe Recording", then click "Ask"
|
228 |
-
|
229 |
-
### Tips:
|
230 |
-
- Use the "Clear Chat" button to reset all fields
|
231 |
-
- For more creative responses, try increasing the Temperature
|
232 |
-
- For longer responses, increase the Max Output Tokens
|
233 |
-
""")
|
234 |
-
|
235 |
-
# Accordion for explaining hyperparameters
|
236 |
-
with gr.Accordion("Hyperparameters", open=False, elem_id="neuroscope-accordion"):
|
237 |
-
gr.Markdown("""
|
238 |
-
### Temperature:
|
239 |
-
Controls the randomness of the model's output. A lower temperature makes the model more deterministic, while a higher temperature makes it more creative and varied.
|
240 |
-
### Top-P (Nucleus Sampling):
|
241 |
-
Controls the cumulative probability distribution from which the model picks the next word. A lower value makes the model more focused and deterministic, while a higher value increases randomness.
|
242 |
-
### Max Output Tokens:
|
243 |
-
Limits the number of tokens (words or subwords) the model can generate in its response. You can use this to control the length of the response.
|
244 |
-
""")
|
245 |
-
|
246 |
-
gr.HTML("""
|
247 |
-
<style>
|
248 |
-
#api_key_button {
|
249 |
-
margin-top: 27px; /* Add margin-top to the button */
|
250 |
-
background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */
|
251 |
-
}
|
252 |
-
#api_key_button:hover {
|
253 |
-
background: linear-gradient(135deg, #5b10f1 0%, #9f3ef3 100%); /* Slightly lighter */
|
254 |
-
}
|
255 |
-
#clear_chat_button {
|
256 |
-
background: linear-gradient(135deg, #e53e3e 0%, #f56565 100%); /* Red gradient */
|
257 |
-
}
|
258 |
-
#clear_chat_button:hover {
|
259 |
-
background: linear-gradient(135deg, #c53030 0%, #e53e3e 100%); /* Slightly darker red gradient on hover */
|
260 |
-
}
|
261 |
-
#ask_button {
|
262 |
-
background: linear-gradient(135deg, #fbd38d 0%, #f6e05e 100%); /* Yellow gradient */
|
263 |
-
}
|
264 |
-
#ask_button:hover {
|
265 |
-
background: linear-gradient(135deg, #ecc94b 0%, #fbd38d 100%); /* Slightly darker yellow gradient on hover */
|
266 |
-
}
|
267 |
-
#transcribe_button {
|
268 |
-
background: linear-gradient(135deg, #68d391 0%, #48bb78 100%); /* Green gradient */
|
269 |
-
}
|
270 |
-
|
271 |
-
#transcribe_button:hover {
|
272 |
-
background: linear-gradient(135deg, #38a169 0%, #68d391 100%); /* Slightly darker green gradient on hover */
|
273 |
-
}
|
274 |
-
#neuroscope-accordion {
|
275 |
-
background: linear-gradient(to right, #00ff94, #00b4db);
|
276 |
-
border-radius: 8px;
|
277 |
-
}
|
278 |
-
</style>
|
279 |
-
""")
|
280 |
-
|
281 |
-
# API Key Input
|
282 |
-
with gr.Row():
|
283 |
-
api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password")
|
284 |
-
api_key_button = gr.Button("Set API Key", elem_id="api_key_button")
|
285 |
-
api_key_output = gr.Textbox(label="API Key Status", interactive=False)
|
286 |
-
|
287 |
-
with gr.Row():
|
288 |
-
temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature")
|
289 |
-
top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P")
|
290 |
-
max_output_tokens = gr.Slider(0, 16384, value=2048, step=512, label="Max Output Tokens")
|
291 |
-
|
292 |
-
with gr.Tabs():
|
293 |
-
with gr.Tab("Image URL Chat"):
|
294 |
-
image_url = gr.Textbox(label="Enter Image URL")
|
295 |
-
image_query = gr.Textbox(label="Ask about the Image")
|
296 |
-
image_url_output = gr.Textbox(label="Response", interactive=False)
|
297 |
-
image_url_button = gr.Button("Ask", elem_id="ask_button")
|
298 |
-
|
299 |
-
with gr.Tab("Text Chat"):
|
300 |
-
text_query = gr.Textbox(label="Enter your query")
|
301 |
-
text_output = gr.Textbox(label="Response", interactive=False)
|
302 |
-
text_button = gr.Button("Ask", elem_id="ask_button")
|
303 |
-
|
304 |
-
with gr.Tab("Image Chat"):
|
305 |
-
image_upload = gr.File(label="Upload an Image", type="filepath")
|
306 |
-
image_text_query = gr.Textbox(label="Ask about the uploaded image")
|
307 |
-
image_output = gr.Textbox(label="Response", interactive=False)
|
308 |
-
image_button = gr.Button("Ask", elem_id="ask_button")
|
309 |
-
|
310 |
-
with gr.Tab("PDF Chat"):
|
311 |
-
pdf_upload = gr.File(label="Upload a PDF", type="filepath")
|
312 |
-
pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF")
|
313 |
-
pdf_output = gr.Textbox(label="Response", interactive=False)
|
314 |
-
pdf_button = gr.Button("Ask", elem_id="ask_button")
|
315 |
-
|
316 |
-
with gr.Tab("Voice Chat"):
|
317 |
-
with gr.Tabs():
|
318 |
-
with gr.Tab("Upload Audio"):
|
319 |
-
# Upload audio section
|
320 |
-
audio_upload = gr.File(label="Upload an Audio File", type="binary")
|
321 |
-
upload_transcribe_button = gr.Button("Transcribe Audio", elem_id="transcribe_button")
|
322 |
-
upload_transcription = gr.Textbox(label="Transcription", interactive=False)
|
323 |
-
upload_audio_output = gr.Textbox(label="Response", interactive=False)
|
324 |
-
upload_audio_button = gr.Button("Ask", elem_id="ask_button")
|
325 |
-
|
326 |
-
with gr.Tab("Record Audio"):
|
327 |
-
# Record audio section
|
328 |
-
audio_recorder = gr.Audio(label="Record your voice", type="filepath")
|
329 |
-
record_transcribe_button = gr.Button("Transcribe Recording", elem_id="transcribe_button")
|
330 |
-
record_transcription = gr.Textbox(label="Transcription", interactive=False)
|
331 |
-
record_audio_output = gr.Textbox(label="Response", interactive=False)
|
332 |
-
record_audio_button = gr.Button("Ask", elem_id="ask_button")
|
333 |
-
|
334 |
-
# Clear chat button
|
335 |
-
clear_button = gr.Button("Clear Chat", elem_id="clear_chat_button")
|
336 |
-
|
337 |
-
# Button Click Actions
|
338 |
-
api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output])
|
339 |
-
image_url_button.click(image_url_chat, [image_url, image_query, temperature, top_p, max_output_tokens], image_url_output)
|
340 |
-
text_button.click(text_chat, [text_query, temperature, top_p, max_output_tokens], text_output)
|
341 |
-
image_button.click(image_chat, [image_upload, image_text_query, temperature, top_p, max_output_tokens], image_output)
|
342 |
-
pdf_button.click(pdf_chat, [pdf_upload, pdf_text_query, temperature, top_p, max_output_tokens], pdf_output)
|
343 |
-
|
344 |
-
# Voice Chat - Upload Audio tab actions
|
345 |
-
upload_transcribe_button.click(
|
346 |
-
process_uploaded_audio,
|
347 |
-
inputs=[audio_upload],
|
348 |
-
outputs=[upload_transcription]
|
349 |
-
)
|
350 |
-
|
351 |
-
# FIXED: Properly order the inputs to process_voice_query
|
352 |
-
upload_audio_button.click(
|
353 |
-
process_voice_query,
|
354 |
-
inputs=[upload_transcription, temperature, top_p, max_output_tokens],
|
355 |
-
outputs=[upload_audio_output]
|
356 |
-
)
|
357 |
-
|
358 |
-
# Voice Chat - Record Audio tab actions
|
359 |
-
record_transcribe_button.click(
|
360 |
-
process_recorded_audio,
|
361 |
-
inputs=[audio_recorder],
|
362 |
-
outputs=[record_transcription]
|
363 |
-
)
|
364 |
-
|
365 |
-
# FIXED: Properly order the inputs to process_voice_query
|
366 |
-
record_audio_button.click(
|
367 |
-
process_voice_query,
|
368 |
-
inputs=[record_transcription, temperature, top_p, max_output_tokens],
|
369 |
-
outputs=[record_audio_output]
|
370 |
-
)
|
371 |
-
|
372 |
-
# Clear button resets all necessary fields
|
373 |
-
clear_button.click(
|
374 |
-
clear_chat,
|
375 |
-
outputs=[
|
376 |
-
image_url, image_query, image_url_output,
|
377 |
-
text_query, text_output,
|
378 |
-
image_text_query, image_output,
|
379 |
-
pdf_upload, pdf_text_query, pdf_output,
|
380 |
-
audio_upload, upload_transcription, upload_audio_output,
|
381 |
-
audio_recorder, record_transcription, record_audio_output,
|
382 |
-
temperature, top_p, max_output_tokens
|
383 |
-
]
|
384 |
-
)
|
385 |
-
|
386 |
-
# Launch Gradio App
|
387 |
if __name__ == "__main__":
|
388 |
-
|
|
|
|
|
|
|
|
1 |
+
from Crypto.Cipher import AES
|
2 |
+
from Crypto.Protocol.KDF import PBKDF2
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
from dotenv import load_dotenv
|
6 |
|
7 |
+
load_dotenv() # Load all environment variables
|
|
|
8 |
|
9 |
+
def unpad(data):
|
10 |
+
return data[:-data[-1]]
|
|
|
|
|
|
|
11 |
|
12 |
+
def decrypt_and_run():
|
13 |
+
# Get password from Hugging Face Secrets environment variable
|
14 |
+
password = os.getenv("PASSWORD")
|
15 |
+
if not password:
|
16 |
+
raise ValueError("PASSWORD secret not found in environment variables")
|
17 |
|
18 |
+
password = password.encode()
|
|
|
19 |
|
20 |
+
with open("code.enc", "rb") as f:
|
21 |
+
encrypted = f.read()
|
|
|
|
|
22 |
|
23 |
+
salt = encrypted[:16]
|
24 |
+
iv = encrypted[16:32]
|
25 |
+
ciphertext = encrypted[32:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
key = PBKDF2(password, salt, dkLen=32, count=1000000)
|
28 |
+
cipher = AES.new(key, AES.MODE_CBC, iv)
|
|
|
|
|
29 |
|
30 |
+
plaintext = unpad(cipher.decrypt(ciphertext))
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
with tempfile.NamedTemporaryFile(suffix=".py", delete=False, mode='wb') as tmp:
|
33 |
+
tmp.write(plaintext)
|
34 |
+
tmp.flush()
|
35 |
+
print(f"[INFO] Running decrypted code from {tmp.name}")
|
36 |
+
os.system(f"python {tmp.name}")
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if __name__ == "__main__":
|
39 |
+
decrypt_and_run()
|
40 |
+
|
41 |
+
# This script decrypts the encrypted code and runs it.
|
42 |
+
# Ensure you have the PASSWORD secret set in your Hugging Face Secrets
|