import gradio as gr import openai import fitz # PyMuPDF for PDF processing import base64 # Variable to store API key api_key = "" # Function to update API key def set_api_key(key): global api_key api_key = key return "API Key Set Successfully!" # Function to interact with OpenAI API def query_openai(messages, temperature, top_p, max_output_tokens): if not api_key: return "Please enter your OpenAI API key first." try: openai.api_key = api_key # Set API key dynamically response = openai.ChatCompletion.create( model="gpt-4.5-preview", messages=messages, temperature=temperature, top_p=top_p, max_tokens=max_output_tokens ) return response["choices"][0]["message"]["content"] except Exception as e: return f"Error: {str(e)}" # Function to process image URL input def image_url_chat(image_url, text_query, temperature, top_p, max_output_tokens): if not image_url or not text_query: return "Please provide an image URL and a query." messages = [ {"role": "user", "content": [ {"type": "image_url", "image_url": {"url": image_url}}, # Corrected format {"type": "text", "text": text_query} ]} ] return query_openai(messages, temperature, top_p, max_output_tokens) # Function to process text input def text_chat(text_query, temperature, top_p, max_output_tokens): if not text_query: return "Please enter a query." messages = [{"role": "user", "content": [{"type": "text", "text": text_query}]}] return query_openai(messages, temperature, top_p, max_output_tokens) # Function to process uploaded image input def image_chat(image_file, text_query, temperature, top_p, max_output_tokens): if image_file is None or not text_query: return "Please upload an image and provide a query." # Encode image as base64 with open(image_file, "rb") as img: base64_image = base64.b64encode(img.read()).decode("utf-8") image_data = f"data:image/jpeg;base64,{base64_image}" messages = [ {"role": "user", "content": [ {"type": "image_url", "image_url": {"url": image_data}}, # Fixed format {"type": "text", "text": text_query} ]} ] return query_openai(messages, temperature, top_p, max_output_tokens) # Function to process uploaded PDF input def pdf_chat(pdf_file, text_query, temperature, top_p, max_output_tokens): if pdf_file is None or not text_query: return "Please upload a PDF and provide a query." # Extract text from the first few pages doc = fitz.open(pdf_file) text = "\n".join([page.get_text("text") for page in doc][:5]) # Limit extraction for performance messages = [ {"role": "user", "content": [ {"type": "text", "text": text}, # Fixed format {"type": "text", "text": text_query} ]} ] return query_openai(messages, temperature, top_p, max_output_tokens) # Function to clear the chat (Fix: Returns the correct number of outputs) def clear_chat(): return "", "", "", "", "", "", "", None, "", None, "", 1.0, 1.0, 1024 # Gradio UI Layout with gr.Blocks() as demo: gr.Markdown("## GPT-4.5 Preview Chatbot") # API Key Input with gr.Row(): api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password") api_key_button = gr.Button("Set API Key") api_key_output = gr.Textbox(label="API Key Status", interactive=False) with gr.Row(): temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature") top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P") max_output_tokens = gr.Slider(0, 16384, value=1024, step=512, label="Max Output Tokens") with gr.Tabs(): with gr.Tab("Image URL Chat"): image_url = gr.Textbox(label="Enter Image URL") image_query = gr.Textbox(label="Ask about the Image") image_url_output = gr.Textbox(label="Response", interactive=False) image_url_button = gr.Button("Ask") with gr.Tab("Text Chat"): text_query = gr.Textbox(label="Enter your query") text_output = gr.Textbox(label="Response", interactive=False) text_button = gr.Button("Ask") with gr.Tab("Image Chat"): image_upload = gr.File(label="Upload an Image", type="filepath") image_text_query = gr.Textbox(label="Ask about the uploaded image") image_output = gr.Textbox(label="Response", interactive=False) image_button = gr.Button("Ask") with gr.Tab("PDF Chat"): pdf_upload = gr.File(label="Upload a PDF", type="filepath") pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF") pdf_output = gr.Textbox(label="Response", interactive=False) pdf_button = gr.Button("Ask") # Clear chat button clear_button = gr.Button("Clear Chat") # Button Click Actions api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output]) image_url_button.click(image_url_chat, [image_url, image_query, temperature, top_p, max_output_tokens], image_url_output) text_button.click(text_chat, [text_query, temperature, top_p, max_output_tokens], text_output) image_button.click(image_chat, [image_upload, image_text_query, temperature, top_p, max_output_tokens], image_output) pdf_button.click(pdf_chat, [pdf_upload, pdf_text_query, temperature, top_p, max_output_tokens], pdf_output) # Fix: Clear button resets all necessary fields correctly clear_button.click( clear_chat, outputs=[ image_url, image_query, image_url_output, text_query, text_output, image_text_query, image_output, pdf_upload, pdf_text_query, pdf_output, temperature, top_p, max_output_tokens ] ) # Launch Gradio App if __name__ == "__main__": demo.launch()