import gradio as gr import openai import fitz # PyMuPDF for PDF processing import base64 import io import numpy as np import soundfile as sf # Variable to store API key api_key = "" # Function to update API key def set_api_key(key): global api_key api_key = key return "API Key Set Successfully!" # Function to interact with OpenAI API def query_openai(messages, temperature, top_p, max_output_tokens): if not api_key: return "Please enter your OpenAI API key first." try: openai.api_key = api_key response = openai.ChatCompletion.create( model="gpt-4.5-preview", messages=messages, temperature=float(temperature), top_p=float(top_p), max_tokens=int(max_output_tokens) ) return response["choices"][0]["message"]["content"] except Exception as e: return f"Error: {str(e)}" # Function to transcribe audio def transcribe_audio(audio_input): if not api_key: return "Error: No API key provided." openai.api_key = api_key try: if isinstance(audio_input, np.ndarray): wav_io = io.BytesIO() sf.write(wav_io, audio_input, samplerate=16000, format="WAV") wav_io.seek(0) audio_file_obj = wav_io audio_file_obj.name = "recorded_audio.wav" else: audio_file_obj = io.BytesIO(audio_input) audio_file_obj.name = "uploaded_audio.wav" transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1") return transcription["text"] except Exception as e: return f"Error transcribing audio: {str(e)}" # Function to clear chat def clear_chat(): return "", "", "", "", "", "", "", None, "", None, "", None, "", 1.0, 1.0, 2048 # Gradio UI Layout with gr.Blocks() as demo: gr.Markdown("## ๐Ÿ”ฅ GPT-4.5 AI Chatbot: Text, Image, PDF, & Voice Support") # Custom CSS for buttons gr.HTML(""" """) # API Key Input with gr.Row(): api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password") api_key_button = gr.Button("Set API Key", elem_id="api_key_button") api_key_output = gr.Textbox(label="API Key Status", interactive=False) # Accordion for Hyperparameters with gr.Accordion("๐Ÿ”ง Advanced Settings (Hyperparameters)", open=False): gr.Markdown(""" - **Temperature**: Controls randomness. Lower values make responses more predictable. - **Top-P (Nucleus Sampling)**: Determines how many top probable words can be chosen. - **Max Output Tokens**: Limits the length of the response. """) with gr.Row(): temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature") top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P") max_output_tokens = gr.Slider(0, 16384, value=2048, step=512, label="Max Output Tokens") with gr.Tabs(): with gr.Tab("๐Ÿ’ฌ Text Chat"): text_query = gr.Textbox(label="Enter your query") text_output = gr.Textbox(label="Response", interactive=False) text_button = gr.Button("Ask") with gr.Tab("๐Ÿ–ผ๏ธ Image URL Chat"): image_url = gr.Textbox(label="Enter Image URL") image_query = gr.Textbox(label="Ask about the Image") image_url_output = gr.Textbox(label="Response", interactive=False) image_url_button = gr.Button("Ask") with gr.Tab("๐Ÿ“ธ Image Upload Chat"): image_upload = gr.File(label="Upload an Image", type="filepath") image_text_query = gr.Textbox(label="Ask about the uploaded image") image_output = gr.Textbox(label="Response", interactive=False) image_button = gr.Button("Ask") with gr.Tab("๐Ÿ“„ PDF Chat"): pdf_upload = gr.File(label="Upload a PDF", type="filepath") pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF") pdf_output = gr.Textbox(label="Response", interactive=False) pdf_button = gr.Button("Ask") with gr.Tab("๐ŸŽค Voice Chat"): audio_record = gr.Audio(source="microphone", type="numpy", label="๐ŸŽ™๏ธ Record Audio") audio_upload = gr.File(label="๐Ÿ“‚ Upload an Audio File", type="binary") audio_query = gr.Textbox(label="Ask a question about the transcription") audio_output = gr.Textbox(label="Response", interactive=False) audio_button = gr.Button("Ask") # Clear chat button clear_button = gr.Button("๐Ÿงน Clear Chat", elem_id="clear_chat_button") # Button Click Actions api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output]) text_button.click(lambda q, t, p, m: query_openai([{"role": "user", "content": [{"type": "text", "text": q}]}], t, p, m), inputs=[text_query, temperature, top_p, max_output_tokens], outputs=[text_output]) image_url_button.click(lambda u, q, t, p, m: query_openai([{"role": "user", "content": [{"type": "image_url", "image_url": {"url": u}}, {"type": "text", "text": q}]}], t, p, m), inputs=[image_url, image_query, temperature, top_p, max_output_tokens], outputs=[image_url_output]) image_button.click(lambda f, q, t, p, m: query_openai([{"role": "user", "content": [{"type": "image_url", "image_url": {"url": f}}, {"type": "text", "text": q}]}], t, p, m), inputs=[image_upload, image_text_query, temperature, top_p, max_output_tokens], outputs=[image_output]) pdf_button.click(lambda f, q, t, p, m: query_openai([{"role": "user", "content": [{"type": "text", "text": f.read()}, {"type": "text", "text": q}]}], t, p, m), inputs=[pdf_upload, pdf_text_query, temperature, top_p, max_output_tokens], outputs=[pdf_output]) audio_button.click(lambda a, q, t, p, m: query_openai([{"role": "user", "content": [{"type": "text", "text": transcribe_audio(a)}, {"type": "text", "text": q}]}], t, p, m), inputs=[audio_record, audio_query, temperature, top_p, max_output_tokens], outputs=[audio_output]) # Launch Gradio App if __name__ == "__main__": demo.launch()