Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
import faiss
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from symspellpy import SymSpell, Verbosity
|
7 |
+
|
8 |
+
# ----------------------
|
9 |
+
# Data Preparation
|
10 |
+
# ----------------------
|
11 |
+
def preprocess_data(file_path):
|
12 |
+
# Load dataset
|
13 |
+
df = pd.read_csv(file_path)
|
14 |
+
|
15 |
+
# Combine multi-value columns
|
16 |
+
def combine_columns(row, prefix):
|
17 |
+
values = [str(row[col]) for col in df.columns if col.startswith(prefix) and pd.notna(row[col])]
|
18 |
+
return ', '.join(values)
|
19 |
+
|
20 |
+
df['uses'] = df.apply(lambda x: combine_columns(x, 'use'), axis=1)
|
21 |
+
df['substitutes'] = df.apply(lambda x: combine_columns(x, 'substitute'), axis=1)
|
22 |
+
df['side_effects'] = df.apply(lambda x: combine_columns(x, 'sideEffect'), axis=1)
|
23 |
+
|
24 |
+
# Clean text
|
25 |
+
text_columns = ['name', 'uses', 'Chemical Class', 'Therapeutic Class']
|
26 |
+
for col in text_columns:
|
27 |
+
df[col] = df[col].str.lower().str.replace('[^\w\s]', '', regex=True)
|
28 |
+
|
29 |
+
return df[['id', 'name', 'uses', 'substitutes', 'side_effects',
|
30 |
+
'Habit Forming', 'Therapeutic Class', 'Action Class']]
|
31 |
+
|
32 |
+
# ----------------------
|
33 |
+
# Embedding & FAISS Setup
|
34 |
+
# ----------------------
|
35 |
+
def setup_faiss(df):
|
36 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
37 |
+
embeddings = model.encode(df['uses'].tolist(), show_progress_bar=True)
|
38 |
+
|
39 |
+
# Create FAISS index
|
40 |
+
dimension = embeddings.shape[1]
|
41 |
+
index = faiss.IndexFlatL2(dimension)
|
42 |
+
index.add(embeddings)
|
43 |
+
return model, index
|
44 |
+
|
45 |
+
# ----------------------
|
46 |
+
# Spelling Correction
|
47 |
+
# ----------------------
|
48 |
+
def setup_spell_checker():
|
49 |
+
sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7)
|
50 |
+
sym_spell.load_dictionary('frequency_dictionary_en_82_765.txt',
|
51 |
+
term_index=0, count_index=1)
|
52 |
+
return sym_spell
|
53 |
+
|
54 |
+
# ----------------------
|
55 |
+
# Streamlit App
|
56 |
+
# ----------------------
|
57 |
+
def main():
|
58 |
+
st.title("🧬 MedSearch NLP: Medicine Recommender System")
|
59 |
+
|
60 |
+
# Load data and models
|
61 |
+
df = preprocess_data('medicine_dataset.csv')
|
62 |
+
model, faiss_index = setup_faiss(df)
|
63 |
+
sym_spell = setup_spell_checker()
|
64 |
+
|
65 |
+
# User input
|
66 |
+
query = st.text_input("Describe your symptoms or medical need:")
|
67 |
+
therapeutic_class = st.selectbox(
|
68 |
+
"Filter by Therapeutic Class (optional):",
|
69 |
+
['All'] + sorted(df['Therapeutic Class'].dropna().unique().tolist())
|
70 |
+
)
|
71 |
+
|
72 |
+
if query:
|
73 |
+
# Spelling correction
|
74 |
+
suggestions = sym_spell.lookup(query, Verbosity.CLOSEST, max_edit_distance=2)
|
75 |
+
if suggestions:
|
76 |
+
query = suggestions[0].term
|
77 |
+
st.info(f"Did you mean: '{query}'?")
|
78 |
+
|
79 |
+
# Semantic search
|
80 |
+
query_embedding = model.encode([query])
|
81 |
+
D, I = faiss_index.search(query_embedding, k=5)
|
82 |
+
|
83 |
+
# Filter results
|
84 |
+
results = df.iloc[I[0]].copy()
|
85 |
+
if therapeutic_class != 'All':
|
86 |
+
results = results[results['Therapeutic Class'] == therapeutic_class]
|
87 |
+
|
88 |
+
# Display results
|
89 |
+
st.subheader("Recommended Medicines")
|
90 |
+
for _, row in results.iterrows():
|
91 |
+
with st.expander(f"💊 {row['name']}"):
|
92 |
+
cols = st.columns(3)
|
93 |
+
cols[0].write(f"**Uses:** {row['uses']}")
|
94 |
+
cols[1].write(f"**Substitutes:** {row['substitutes']}")
|
95 |
+
cols[2].write(f"**Side Effects:** {row['side_effects']}")
|
96 |
+
|
97 |
+
cols2 = st.columns(2)
|
98 |
+
cols2[0].write(f"Therapeutic Class: {row['Therapeutic Class']}")
|
99 |
+
cols2[1].write(f"Habit Forming: {row['Habit Forming']}")
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
main()
|