File size: 26,213 Bytes
05101bc 0505e77 05101bc 5c974ca 0505e77 05101bc 5c974ca 05101bc 5c974ca 05101bc 5c974ca 05101bc 0505e77 227ffe0 0505e77 227ffe0 0505e77 227ffe0 0505e77 227ffe0 0505e77 227ffe0 0505e77 227ffe0 0505e77 227ffe0 0505e77 227ffe0 05101bc 0505e77 6620310 0505e77 227ffe0 b346c8a 8dd2ee6 b346c8a 73a3536 b346c8a 0505e77 b346c8a 05101bc 6620310 b346c8a 6620310 b346c8a 0505e77 b346c8a 0505e77 b346c8a 0505e77 b346c8a 227ffe0 b346c8a 73a3536 b346c8a e02a5ca b346c8a 227ffe0 b346c8a 227ffe0 b346c8a 227ffe0 b346c8a 0505e77 0389ee0 0505e77 227ffe0 0505e77 b346c8a 0505e77 b346c8a 0505e77 b346c8a 0505e77 b346c8a 0505e77 0389ee0 0505e77 b346c8a 05101bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import base64
from together import Together
def extract_medicines(api_key, image):
"""
Extract medicine names from a prescription image using Together AI's Llama-Vision-Free model
"""
# Check if API key is provided
if not api_key:
return "Please enter your Together API key."
if image is None:
return "Please upload an image."
try:
# Initialize Together client with the provided API key
client = Together(api_key=api_key)
# Convert image to base64
with open(image, "rb") as img_file:
img_data = img_file.read()
b64_img = base64.b64encode(img_data).decode('utf-8')
# Make API call with base64 encoded image
response = client.chat.completions.create(
model="meta-llama/Llama-Vision-Free",
messages=[
{
"role": "system",
"content": "You are an expert in identifying medicine names from prescription images."
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Please extract the names of the medicines only."
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{b64_img}"
}
}
]
}
]
)
# Extract medicine names from response
medicine_list = response.choices[0].message.content
return medicine_list
except Exception as e:
return f"Error: {str(e)}"
def recommend_medicine(api_key, medicine_name, csv_file=None):
"""
Use Together API to recommend alternative medicines based on input medicine name
using data from the provided CSV file with specific column structure.
It will use AI to find similar medicines even if the exact name isn't in the dataset.
"""
try:
# If CSV file is provided, use it; otherwise use default
if csv_file is not None:
# Read the uploaded CSV
if isinstance(csv_file, str): # Path to default CSV
df = pd.read_csv(csv_file)
else: # Uploaded file
df = pd.read_csv(csv_file.name)
else:
# Use the default medicine_dataset.csv in the current directory
try:
df = pd.read_csv("medicine_dataset.csv")
except FileNotFoundError:
return "Error: Default medicine_dataset.csv not found. Please upload a CSV file."
# Check if medicine is in the dataset
medicine_exists = medicine_name in df['name'].values
# Create a helpful context about the dataset to send to the LLM
dataset_overview = f"The dataset contains {len(df)} medicines with columns for name, substitutes, side effects, uses, chemical class, etc."
# Sample of medicine names to give the model context
sample_names = df['name'].sample(min(20, len(df))).tolist()
medicine_sample = f"Sample medicines in the dataset: {', '.join(sample_names)}"
# Extract specific medicine data if available
medicine_data = None
medicine_info_str = ""
if medicine_exists:
medicine_data = df[df['name'] == medicine_name]
medicine_info_str = medicine_data.to_string(index=False)
# Create system prompt with dataset context
system_prompt = f"""You are a pharmaceutical expert system that recommends alternative medicines based on a comprehensive medicine dataset. The user has provided the medicine name "{medicine_name}".
DATASET INFORMATION:
{dataset_overview}
{medicine_sample}
The dataset has the following columns:
- name: Medicine name
- substitute0 through substitute4: Potential substitute medicines
- sideEffect0 through sideEffect41: Possible side effects
- use0 through use4: Medical uses
- Chemical Class: The chemical classification
- Habit Forming: Whether the medicine is habit-forming
- Therapeutic Class: The therapeutic classification
- Action Class: How the medicine works
YOUR TASK:
{"The medicine was found in the dataset with the following information:" if medicine_exists else "The medicine was NOT found in the dataset with an exact match. Your task is to:"}
{medicine_info_str if medicine_exists else "1. Identify what kind of medicine this likely is based on its name (e.g., antibiotics, pain relievers, etc.)"}
{'' if medicine_exists else "2. Look for medicines in the sample list that might be similar or serve similar purposes"}
Please recommend alternative medicines for "{medicine_name}" with the following details for each:
1. Name of the alternative medicine
2. Why it's a good alternative (similar chemical composition, therapeutic use, etc.)
3. Potential side effects to be aware of
4. Usage recommendations
5. Similarity to the original medicine (high, medium, low)
Include at least 3-5 alternatives if possible.
IMPORTANT:
- If the medicine name contains strength or formulation (like "500mg" or "Duo"), focus on finding the base medicine first
- Explain why these alternatives might be suitable replacements
- Include appropriate medical disclaimers
- Format your response clearly with headings for each alternative medicine
"""
# Initialize Together client with the API key
client = Together(api_key=api_key)
# Make API call
response = client.chat.completions.create(
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
messages=[
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": f"Please recommend alternatives for {medicine_name} based on the available information."
}
],
max_tokens=2000,
temperature=0.7 # Slightly higher temperature for creative recommendations
)
# Get the raw response
recommendation_text = response.choices[0].message.content
# Add disclaimer
final_response = recommendation_text + "\n\n---\n\n**DISCLAIMER:** This information is for educational purposes only. Always consult with a healthcare professional before making any changes to your medication."
return final_response
except Exception as e:
return f"Error: {str(e)}"
def send_medicine_to_recommender(api_key, medicine_names, csv_file):
"""
Takes medicine names extracted from prescription and gets recommendations
"""
if not medicine_names or medicine_names.startswith("Error") or medicine_names.startswith("Please"):
return "Please extract valid medicine names first"
# Extract the first medicine name from the list (assuming it's the first line or first item)
medicine_lines = medicine_names.strip().split('\n')
if not medicine_lines:
return "No valid medicine name found in extraction results"
# Get the first medicine name (remove any bullet points or numbers)
first_medicine = medicine_lines[0]
# Clean up the medicine name (remove bullets, numbers, etc.)
first_medicine = first_medicine.lstrip('β’-*0123456789. ').strip()
# Check if we have a valid medicine name
if not first_medicine:
return "Could not identify a valid medicine name from extraction"
# Call the recommend medicine function with the first extracted medicine
return recommend_medicine(api_key, first_medicine, csv_file)
def analyze_full_prescription(api_key, medicine_names, csv_file):
"""
Takes all extracted medicine names and analyzes their interactions and provides comprehensive information
"""
if not medicine_names or medicine_names.startswith("Error") or medicine_names.startswith("Please"):
return "Please extract valid medicine names first"
try:
# Parse the medicine names from the extracted text
medicine_lines = medicine_names.strip().split('\n')
cleaned_medicines = []
# Clean up medicine names (remove bullets, numbers, etc.)
for medicine in medicine_lines:
cleaned_medicine = medicine.lstrip('β’-*0123456789. ').strip()
if cleaned_medicine:
cleaned_medicines.append(cleaned_medicine)
if not cleaned_medicines:
return "No valid medicine names found in extraction"
# Create a prompt for the LLM to analyze the full prescription
medicines_list = ", ".join(cleaned_medicines)
system_prompt = f"""You are a pharmaceutical expert analyzing a full prescription containing the following medicines: {medicines_list}.
Please provide a comprehensive analysis including:
1. Purpose: The likely medical condition(s) being treated with this combination of medicines
2. Potential interactions: Any known drug interactions between these medicines
3. Side effects: Common side effects to watch for when taking this combination
4. Recommendations: General advice for the patient taking these medicines
5. Questions for the doctor: Important questions the patient should ask their healthcare provider
Base your analysis on pharmacological knowledge about these medicines and their typical uses.
"""
# Initialize Together client with the API key
client = Together(api_key=api_key)
# Make API call
response = client.chat.completions.create(
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
messages=[
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": f"Please analyze this prescription with the following medicines: {medicines_list}"
}
],
max_tokens=2000,
temperature=0.3 # Lower temperature for more factual responses
)
analysis_text = response.choices[0].message.content
# Add disclaimer
final_response = analysis_text + "\n\n---\n\n**DISCLAIMER:** This analysis is for informational purposes only and should not replace professional medical advice. Always consult with your healthcare provider about your prescription."
return final_response
except Exception as e:
return f"Error: {str(e)}"
# Custom CSS for styling the application
custom_css = """
:root {
--primary-color: #3498db;
--secondary-color: #2ecc71;
--accent-color: #e74c3c;
--background-color: #f9f9f9;
--card-bg: #ffffff;
--text-color: #333333;
--light-text: #777777;
--border-radius: 10px;
--shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
--hover-shadow: 0 10px 15px rgba(0, 0, 0, 0.15);
}
body {
font-family: 'Roboto', sans-serif;
background-color: var(--background-color);
color: var(--text-color);
}
/* Header Styling */
.app-header {
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
padding: 20px;
border-radius: var(--border-radius);
color: white;
margin-bottom: 20px;
box-shadow: var(--shadow);
text-align: center;
}
.app-header h1 {
margin: 0;
font-size: 2.5rem;
font-weight: 700;
}
.app-header p {
margin: 10px 0 0;
font-size: 1.1rem;
opacity: 0.9;
}
/* General Card Styling */
.card {
background-color: var(--card-bg);
border-radius: var(--border-radius);
padding: 20px;
margin-bottom: 20px;
box-shadow: var(--shadow);
transition: box-shadow 0.3s ease;
}
.card:hover {
box-shadow: var(--hover-shadow);
}
.card-header {
border-bottom: 1px solid #eee;
padding-bottom: 10px;
margin-bottom: 15px;
font-weight: 600;
color: var(--primary-color);
}
/* Button Styling */
.primary-btn button {
background: linear-gradient(to right, var(--primary-color), #2980b9) !important;
border: none !important;
color: white !important;
padding: 10px 20px !important;
border-radius: var(--border-radius) !important;
font-weight: 600 !important;
transition: transform 0.2s, box-shadow 0.2s !important;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1) !important;
}
.primary-btn button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
}
.secondary-btn button {
background: linear-gradient(to right, var(--secondary-color), #27ae60) !important;
border: none !important;
color: white !important;
padding: 10px 20px !important;
border-radius: var(--border-radius) !important;
font-weight: 600 !important;
transition: transform 0.2s, box-shadow 0.2s !important;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1) !important;
}
.secondary-btn button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
}
.accent-btn button {
background: linear-gradient(to right, var(--accent-color), #c0392b) !important;
border: none !important;
color: white !important;
padding: 10px 20px !important;
border-radius: var(--border-radius) !important;
font-weight: 600 !important;
transition: transform 0.2s, box-shadow 0.2s !important;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1) !important;
}
.accent-btn button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
}
/* Input Styling */
.custom-input input, .custom-input textarea {
border-radius: var(--border-radius) !important;
border: 1px solid #ddd !important;
padding: 12px !important;
transition: border-color 0.3s, box-shadow 0.3s !important;
}
.custom-input input:focus, .custom-input textarea:focus {
border-color: var(--primary-color) !important;
box-shadow: 0 0 0 2px rgba(52, 152, 219, 0.2) !important;
}
/* Tab Styling */
.custom-tabs .tabs {
border-bottom: 2px solid #eee !important;
margin-top: -100px;
}
.custom-tabs .tab-nav button {
border: none !important;
background: transparent !important;
padding: 10px 20px !important;
margin: 0 !important;
color: var(--light-text) !important;
font-weight: 600 !important;
transition: color 0.3s !important;
}
.custom-tabs .tab-nav button[data-selected="true"] {
color: var(--primary-color) !important;
border-bottom: 3px solid var(--primary-color) !important;
}
/* File Upload Styling */
.custom-file-upload {
border: 2px dashed #ddd !important;
border-radius: var(--border-radius) !important;
padding: 20px !important;
text-align: center !important;
transition: border-color 0.3s !important;
}
.custom-file-upload:hover {
border-color: var(--primary-color) !important;
}
/* Output Styling */
.output-area {
background-color: #f5f7fa !important;
border-radius: var(--border-radius) !important;
padding: 15px !important;
border-left: 4px solid var(--primary-color) !important;
}
/* Info Box Styling */
.info-box {
background-color: rgba(52, 152, 219, 0.1) !important;
border-left: 4px solid var(--primary-color) !important;
padding: 15px !important;
border-radius: var(--border-radius) !important;
margin: 20px 0 !important;
}
/* Animation for loading state */
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.6; }
100% { opacity: 1; }
}
.loading {
animation: pulse 1.5s infinite ease-in-out;
}
/* Responsive improvements */
@media (max-width: 768px) {
.app-header h1 {
font-size: 2rem;
}
.card {
padding: 15px;
}
}
/* Custom markdown styling */
.custom-markdown h1, .custom-markdown h2, .custom-markdown h3 {
color: var(--primary-color);
}
.custom-markdown a {
color: var(--secondary-color);
text-decoration: none;
}
.custom-markdown a:hover {
text-decoration: underline;
}
.custom-markdown blockquote {
border-left: 4px solid var(--secondary-color);
padding-left: 15px;
color: var(--light-text);
}
.custom-markdown code {
background-color: #f0f0f0;
padding: 2px 4px;
border-radius: 4px;
}
/* Disclaimer styling */
.disclaimer {
background-color: rgba(231, 76, 60, 0.1);
border-left: 4px solid var(--accent-color);
padding: 10px 15px;
border-radius: var(--border-radius);
margin-top: 20px;
font-size: 0.9rem;
}
/* Icon styling */
.icon {
vertical-align: middle;
margin-right: 8px;
}
/* Feature box styling */
.feature-box {
display: flex;
background-color: var(--card-bg);
border-radius: var(--border-radius);
padding: 15px;
margin: 10px 0;
box-shadow: var(--shadow);
}
.feature-icon {
width: 50px;
height: 50px;
background-color: rgba(52, 152, 219, 0.2);
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
margin-right: 15px;
}
.feature-content {
flex: 1;
}
.feature-content h3 {
margin-top: 0;
color: var(--primary-color);
}
/* API key styling */
.api-key-box {
background-color: rgba(46, 204, 113, 0.1);
border-radius: var(--border-radius);
padding: 15px;
margin-bottom: 20px;
border: 1px solid rgba(46, 204, 113, 0.3);
}
"""
# Custom HTML components
html_header = """
<div class="app-header">
<h1>π Medicine Assistant</h1>
<p>AI-powered tools for medicine analysis, alternatives, and prescription insights</p>
</div>
"""
html_api_key_section = """
<div class="api-key-box">
<h3>π API Access</h3>
<p>Your Together API key is securely used for this session only and is not stored.</p>
</div>
"""
html_about_section = """
<div class="card">
<div class="card-header">About Medicine Assistant</div>
<p>This advanced application combines AI-powered tools to help you understand your prescriptions better:</p>
<div class="feature-box">
<div class="feature-icon">π</div>
<div class="feature-content">
<h3>Prescription Extraction</h3>
<p>Upload an image of your prescription and the AI will identify medicine names using advanced computer vision.</p>
</div>
</div>
<div class="feature-box">
<div class="feature-icon">π</div>
<div class="feature-content">
<h3>Alternative Medicine Finder</h3>
<p>Get detailed information about alternative medications that might serve similar purposes.</p>
</div>
</div>
<div class="feature-box">
<div class="feature-icon">π</div>
<div class="feature-content">
<h3>Prescription Analysis</h3>
<p>Analyze entire prescriptions for potential interactions, uses, and important information.</p>
</div>
</div>
<div class="disclaimer">
<strong>Important:</strong> This application is for informational purposes only. Always consult with a healthcare professional before making any changes to your medication regimen.
</div>
</div>
"""
html_how_to_use_extractor = """
<div class="info-box">
<h3>How to use the Prescription Extractor:</h3>
<ol>
<li>Enter your Together API key above</li>
<li>Upload a clear image of your prescription</li>
<li>Click "Extract Medicines" to identify medicines in the image</li>
<li>After extraction, you can:
<ul>
<li>Get alternative recommendations for the first medicine</li>
<li>Analyze all medicines for potential interactions and insights</li>
</ul>
</li>
</ol>
<p><strong>Tip:</strong> For best results, ensure your prescription image is clear, well-lit, and shows all medicine names clearly.</p>
<p><strong>Tip 2:</strong> Please wait for few seconds for results.</p>
</div>
"""
html_how_to_use_recommender = """
<div class="info-box">
<h3>How to use the Alternative Recommender:</h3>
<ol>
<li>Enter your Together API key (same key used across the application)</li>
<li>Type the name of a medicine you'd like to find alternatives for</li>
<li>Click "Get Recommendations" to see detailed information about possible alternatives</li>
</ol>
<p><strong>Features:</strong></p>
<ul>
<li>Finds alternatives even if the exact medicine isn't in the database</li>
<li>Analyzes medicine names to determine likely purpose and composition</li>
<li>Provides detailed information about substitutes, side effects, and usage</li>
</ul>
</div>
"""
# Create Gradio interface with tabs for all functionalities and custom styling
with gr.Blocks(css=custom_css, title="Medicine Assistant") as app:
gr.HTML(html_header)
# API key input (shared between tabs)
with gr.Row():
with gr.Column():
gr.HTML(html_api_key_section)
api_key_input = gr.Textbox(
label="Together API Key",
placeholder="Enter your Together API key here...",
type="password",
elem_classes=["custom-input"]
)
# Create a file input for CSV that can be shared between tabs
with gr.Row():
with gr.Column():
csv_file_input = gr.File(
label="Upload Medicine CSV (Optional)",
file_types=[".csv"],
type="filepath",
elem_classes=["custom-file-upload"]
)
gr.Markdown("If no CSV is uploaded, the app will use the default 'medicine_dataset.csv' file.")
with gr.Tabs(elem_classes=["custom-tabs"]) as tabs:
with gr.Tab("Prescription Medicine Extractor"):
gr.HTML("""<div class="card">
<div class="card-header">Prescription Medicine Extractor</div>
<p>Upload a prescription image to extract medicine names using Together AI's Llama-Vision-Free model.</p>
</div>""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
type="filepath",
label="Upload Prescription Image",
elem_classes=["custom-file-upload"]
)
extract_btn = gr.Button("Extract Medicines", elem_classes=["primary-btn"])
with gr.Column(scale=2):
extracted_output = gr.Textbox(
label="Extracted Medicines",
lines=10,
elem_classes=["custom-input", "output-area"]
)
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
recommend_from_extract_btn = gr.Button(
"Get Recommendations (Tab) for First Medicine",
elem_classes=["secondary-btn"]
)
with gr.Row():
analyze_full_btn = gr.Button(
"Analyze Full Prescription (Full Analysis Tab)",
elem_classes=["accent-btn"]
)
with gr.Column(scale=2):
output_tabs = gr.Tabs(elem_classes=["custom-tabs"])
with output_tabs:
with gr.Tab("Recommendations"):
recommendation_from_extract_output = gr.Markdown(elem_classes=["custom-markdown"])
with gr.Tab("Full Analysis"):
full_analysis_output = gr.Markdown(elem_classes=["custom-markdown"])
gr.HTML(html_how_to_use_extractor)
# Connect the buttons to functions
extract_btn.click(
fn=extract_medicines,
inputs=[api_key_input, image_input],
outputs=extracted_output
)
recommend_from_extract_btn.click(
fn=send_medicine_to_recommender,
inputs=[api_key_input, extracted_output, csv_file_input],
outputs=recommendation_from_extract_output
)
analyze_full_btn.click(
fn=analyze_full_prescription,
inputs=[api_key_input, extracted_output, csv_file_input],
outputs=full_analysis_output
)
with gr.Tab("Medicine Alternative Recommender"):
gr.HTML("""<div class="card">
<div class="card-header">Medicine Alternative Recommender</div>
<p>This tool recommends alternative medicines based on an input medicine name using the Together API.</p>
</div>""")
with gr.Row():
with gr.Column():
medicine_name = gr.Textbox(
label="Medicine Name",
placeholder="Enter a medicine name (e.g., Augmentin 625 Duo)",
elem_classes=["custom-input"]
)
submit_btn = gr.Button("Get Recommendations", elem_classes=["primary-btn"])
gr.HTML(html_how_to_use_recommender)
with gr.Column():
recommendation_output = gr.Markdown(elem_classes=["custom-markdown"])
submit_btn.click(
recommend_medicine,
inputs=[api_key_input, medicine_name, csv_file_input],
outputs=recommendation_output
)
gr.HTML(html_about_section)
# Launch the app
if __name__ == "__main__":
app.launch() |