Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,379 +1,124 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from threading import Thread
|
4 |
-
import time
|
5 |
-
import torch
|
6 |
-
import cv2
|
7 |
-
import numpy as np
|
8 |
-
from PIL import Image
|
9 |
import re
|
10 |
-
import os
|
11 |
-
from transformers import (
|
12 |
-
Qwen2VLForConditionalGeneration,
|
13 |
-
AutoProcessor,
|
14 |
-
TextIteratorStreamer,
|
15 |
-
)
|
16 |
-
from transformers import Qwen2_5_VLForConditionalGeneration
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"""
|
23 |
-
Returns an HTML snippet for a thin animated progress bar with a label.
|
24 |
-
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
|
25 |
-
"""
|
26 |
-
return f'''
|
27 |
-
<div style="display: flex; align-items: center;">
|
28 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
29 |
-
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
30 |
-
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
31 |
-
</div>
|
32 |
-
</div>
|
33 |
-
<style>
|
34 |
-
@keyframes loading {{
|
35 |
-
0% {{ transform: translateX(-100%); }}
|
36 |
-
100% {{ transform: translateX(100%); }}
|
37 |
-
}}
|
38 |
-
</style>
|
39 |
-
'''
|
40 |
-
|
41 |
-
def downsample_video(video_path):
|
42 |
-
"""
|
43 |
-
Downsamples a video file by extracting 10 evenly spaced frames.
|
44 |
-
Returns a list of tuples (PIL.Image, timestamp).
|
45 |
-
"""
|
46 |
-
vidcap = cv2.VideoCapture(video_path)
|
47 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
48 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
49 |
-
frames = []
|
50 |
-
if total_frames <= 0 or fps <= 0:
|
51 |
-
vidcap.release()
|
52 |
-
return frames
|
53 |
-
# Determine 10 evenly spaced frame indices.
|
54 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
55 |
-
for i in frame_indices:
|
56 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
57 |
-
success, image = vidcap.read()
|
58 |
-
if success:
|
59 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
60 |
-
pil_image = Image.fromarray(image)
|
61 |
-
timestamp = round(i / fps, 2)
|
62 |
-
frames.append((pil_image, timestamp))
|
63 |
-
vidcap.release()
|
64 |
-
return frames
|
65 |
-
|
66 |
-
def extract_medicine_names(text):
|
67 |
-
"""
|
68 |
-
Extracts medicine names from OCR text output.
|
69 |
-
Uses a combination of pattern matching and formatting to identify medications.
|
70 |
-
Returns a formatted list of medicines found.
|
71 |
-
"""
|
72 |
-
# Common medicine patterns (extended to catch more formats)
|
73 |
-
lines = text.split('\n')
|
74 |
-
medicines = []
|
75 |
-
|
76 |
-
# Look for patterns typical in prescriptions
|
77 |
-
for line in lines:
|
78 |
-
# Clean and standardize the line
|
79 |
-
clean_line = line.strip()
|
80 |
-
|
81 |
-
# Skip very short lines, headers, or non-relevant text
|
82 |
-
if len(clean_line) < 3 or re.search(r'(prescription|rx|patient|name|date|doctor|hospital|clinic|address)', clean_line.lower()):
|
83 |
-
continue
|
84 |
-
|
85 |
-
# Medicine names often appear at the beginning of lines, with dosage info following
|
86 |
-
# Look for tablet/capsule/mg indicators - strong indicators of medication
|
87 |
-
if re.search(r'(tab|tablet|cap|capsule|mg|ml|injection|syrup|solution|suspension|ointment|cream|gel|patch|suppository|inhaler|drops)', clean_line.lower()):
|
88 |
-
# Extract the likely medicine name - the part before the dosage/form or the entire line if it's short
|
89 |
-
medicine_match = re.split(r'(\d+\s*mg|\d+\s*ml|\d+\s*tab|\d+\s*cap)', clean_line, 1)[0].strip()
|
90 |
-
if medicine_match and len(medicine_match) > 2:
|
91 |
-
medicines.append(medicine_match)
|
92 |
-
|
93 |
-
# Check for brand names or generic medication patterns
|
94 |
-
elif re.match(r'^[A-Z][a-z]+\s*[A-Z0-9]', clean_line) or re.match(r'^[A-Z][a-z]+', clean_line):
|
95 |
-
# Likely a medicine name starting with a capital letter
|
96 |
-
medicine_parts = re.split(r'(\d+|\s+\d+\s*times|\s+\d+\s*times\s+daily)', clean_line, 1)
|
97 |
-
if medicine_parts and len(medicine_parts[0]) > 2:
|
98 |
-
medicines.append(medicine_parts[0].strip())
|
99 |
-
|
100 |
-
# Remove duplicates while preserving order
|
101 |
-
unique_medicines = []
|
102 |
-
for med in medicines:
|
103 |
-
if med not in unique_medicines:
|
104 |
-
unique_medicines.append(med)
|
105 |
|
106 |
-
return unique_medicines
|
107 |
-
|
108 |
-
# Check for CUDA availability
|
109 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
110 |
-
print(f"Using device: {device}")
|
111 |
-
|
112 |
-
# Adjust model loading based on device
|
113 |
-
dtype = torch.float16 if device == "cuda" else torch.float32
|
114 |
-
bfdtype = torch.bfloat16 if device == "cuda" else torch.float32
|
115 |
-
|
116 |
-
# Set lower precision for CPU if available
|
117 |
-
if device == "cpu":
|
118 |
try:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
132 |
-
QV_MODEL_ID,
|
133 |
-
trust_remote_code=True,
|
134 |
-
torch_dtype=dtype,
|
135 |
-
low_cpu_mem_usage=True,
|
136 |
-
).to(device).eval()
|
137 |
-
|
138 |
-
# RolmOCR branch (@RolmOCR)
|
139 |
-
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
140 |
-
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
141 |
-
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
142 |
-
ROLMOCR_MODEL_ID,
|
143 |
-
trust_remote_code=True,
|
144 |
-
torch_dtype=bfdtype,
|
145 |
-
low_cpu_mem_usage=True,
|
146 |
-
).to(device).eval()
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
# Main Inference Function
|
154 |
-
def model_inference(input_dict, history):
|
155 |
-
if not models_loaded:
|
156 |
-
yield "Error: Models could not be loaded. Please check system requirements."
|
157 |
-
return
|
158 |
-
|
159 |
-
text = input_dict["text"].strip()
|
160 |
-
files = input_dict.get("files", [])
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
],
|
178 |
-
|
|
|
179 |
|
180 |
-
|
181 |
-
inputs = rolmocr_processor(
|
182 |
-
text=[prompt_full],
|
183 |
-
images=images,
|
184 |
-
return_tensors="pt",
|
185 |
-
padding=True,
|
186 |
-
).to(device)
|
187 |
|
188 |
-
#
|
189 |
-
|
190 |
-
|
191 |
-
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
|
192 |
-
thread.start()
|
193 |
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
time.sleep(0.01)
|
201 |
|
202 |
-
|
203 |
-
medicines = extract_medicine_names(ocr_text)
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
if medicines:
|
208 |
-
for i, med in enumerate(medicines, 1):
|
209 |
-
result += f"{i}. {med}\n"
|
210 |
-
else:
|
211 |
-
result += "No medicine names detected in the prescription.\n\n"
|
212 |
-
|
213 |
-
result += "\n\n## Full OCR Text\n\n```\n" + ocr_text + "\n```"
|
214 |
-
yield result
|
215 |
-
return
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
# Check if a video is provided for inference.
|
222 |
-
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
|
223 |
-
video_path = files[0]
|
224 |
-
frames = downsample_video(video_path)
|
225 |
-
if not frames:
|
226 |
-
yield "Error: Could not extract frames from the video."
|
227 |
-
return
|
228 |
-
# Build the message: prompt followed by each frame with its timestamp.
|
229 |
-
content_list = [{"type": "text", "text": text_prompt}]
|
230 |
-
for image, timestamp in frames:
|
231 |
-
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
|
232 |
-
content_list.append({"type": "image", "image": image})
|
233 |
-
messages = [{"role": "user", "content": content_list}]
|
234 |
-
# For video, extract images only.
|
235 |
-
video_images = [image for image, _ in frames]
|
236 |
-
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
237 |
-
inputs = rolmocr_processor(
|
238 |
-
text=[prompt_full],
|
239 |
-
images=video_images,
|
240 |
-
return_tensors="pt",
|
241 |
-
padding=True,
|
242 |
-
).to(device)
|
243 |
-
else:
|
244 |
-
# Assume image(s) or text query.
|
245 |
-
if len(files) > 1:
|
246 |
-
images = [load_image(image) for image in files]
|
247 |
-
elif len(files) == 1:
|
248 |
-
images = [load_image(files[0])]
|
249 |
-
else:
|
250 |
-
images = []
|
251 |
-
if text_prompt == "" and not images:
|
252 |
-
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
|
253 |
-
return
|
254 |
-
messages = [{
|
255 |
-
"role": "user",
|
256 |
-
"content": [
|
257 |
-
*[{"type": "image", "image": image} for image in images],
|
258 |
-
{"type": "text", "text": text_prompt},
|
259 |
-
],
|
260 |
-
}]
|
261 |
-
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
262 |
-
inputs = rolmocr_processor(
|
263 |
-
text=[prompt_full],
|
264 |
-
images=images if images else None,
|
265 |
-
return_tensors="pt",
|
266 |
-
padding=True,
|
267 |
-
).to(device)
|
268 |
-
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
|
269 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
270 |
-
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
|
271 |
-
thread.start()
|
272 |
-
buffer = ""
|
273 |
-
# Use a different color scheme for RolmOCR (purple-themed).
|
274 |
-
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
|
275 |
-
for new_text in streamer:
|
276 |
-
buffer += new_text
|
277 |
-
buffer = buffer.replace("<|im_end|>", "")
|
278 |
-
time.sleep(0.01)
|
279 |
-
yield buffer
|
280 |
-
return
|
281 |
-
|
282 |
-
# Default Inference: Qwen2VL OCR
|
283 |
-
# Process files: support multiple images.
|
284 |
-
if len(files) > 1:
|
285 |
-
images = [load_image(image) for image in files]
|
286 |
-
elif len(files) == 1:
|
287 |
-
images = [load_image(files[0])]
|
288 |
-
else:
|
289 |
-
images = []
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
time.sleep(0.01)
|
322 |
-
yield buffer
|
323 |
-
|
324 |
-
# Gradio Interface
|
325 |
-
examples = [
|
326 |
-
[{"text": "@Prescription Extract medicines from this prescription", "files": ["examples/prescription1.jpg"]}],
|
327 |
-
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
|
328 |
-
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
|
329 |
-
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
330 |
-
]
|
331 |
-
|
332 |
-
css = """
|
333 |
-
.gradio-container {
|
334 |
-
font-family: 'Roboto', sans-serif;
|
335 |
-
}
|
336 |
-
.prescription-header {
|
337 |
-
background-color: #4B0082;
|
338 |
-
color: white;
|
339 |
-
padding: 10px;
|
340 |
-
border-radius: 5px;
|
341 |
-
margin-bottom: 10px;
|
342 |
-
}
|
343 |
-
"""
|
344 |
-
|
345 |
-
description = """
|
346 |
-
# **Multimodal OCR with Medicine Extraction**
|
347 |
-
|
348 |
-
## Modes:
|
349 |
-
- **@Prescription** - Upload a prescription image to extract medicine names
|
350 |
-
- **@RolmOCR** - Use RolmOCR for general text extraction
|
351 |
-
- **Default** - Use Qwen2VL OCR for general purposes
|
352 |
-
|
353 |
-
Upload your medical prescription images and get the medicine names extracted automatically!
|
354 |
-
"""
|
355 |
-
|
356 |
-
# Memory optimization for Hugging Face Spaces
|
357 |
-
import gc
|
358 |
-
max_memory = {i: f"{15}GiB" for i in range(torch.cuda.device_count())}
|
359 |
-
|
360 |
-
demo = gr.ChatInterface(
|
361 |
-
fn=model_inference,
|
362 |
-
description=description,
|
363 |
-
examples=examples,
|
364 |
-
textbox=gr.MultimodalTextbox(
|
365 |
-
label="Query Input",
|
366 |
-
file_types=["image", "video"],
|
367 |
-
file_count="multiple",
|
368 |
-
placeholder="Use @Prescription to extract medicines, @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
|
369 |
-
),
|
370 |
-
stop_btn="Stop Generation",
|
371 |
-
multimodal=True,
|
372 |
-
cache_examples=False,
|
373 |
-
css=css
|
374 |
-
)
|
375 |
|
|
|
376 |
if __name__ == "__main__":
|
377 |
-
|
378 |
-
|
379 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import gradio as gr
|
2 |
+
from openai import OpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
def get_openrouter_client(api_key):
|
6 |
+
"""Initialize OpenRouter client with user-provided API key"""
|
7 |
+
if not api_key or api_key.strip() == "":
|
8 |
+
return None, "Please enter your OpenRouter API key"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
+
client = OpenAI(
|
12 |
+
base_url="https://openrouter.ai/api/v1",
|
13 |
+
api_key=api_key
|
14 |
+
)
|
15 |
+
return client, None
|
16 |
+
except Exception as e:
|
17 |
+
return None, f"Error initializing client: {str(e)}"
|
18 |
+
|
19 |
+
def extract_medicine_names(image, api_key):
|
20 |
+
"""Extract medicine names from a prescription image using Gemini via OpenRouter"""
|
21 |
+
if not image:
|
22 |
+
return "Please upload a prescription image."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Get client with user-provided API key
|
25 |
+
client, error = get_openrouter_client(api_key)
|
26 |
+
if error:
|
27 |
+
return error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
try:
|
30 |
+
response = client.chat.completions.create(
|
31 |
+
extra_headers={
|
32 |
+
"HTTP-Referer": "https://medicine-extractor-app.com",
|
33 |
+
"X-Title": "Medicine Name Extractor",
|
34 |
+
},
|
35 |
+
model="google/gemini-2.5-pro-exp-03-25:free",
|
36 |
+
messages=[
|
37 |
+
{
|
38 |
+
"role": "system",
|
39 |
+
"content": "You are an AI specialized in extracting medication names from prescription images. Only list the medication names, nothing else."
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"role": "user",
|
43 |
+
"content": [
|
44 |
+
{
|
45 |
+
"type": "text",
|
46 |
+
"text": "Extract ONLY the names of medications from this prescription image. Provide them as a numbered list. If this isn't a medical prescription, respond with 'No prescription detected'."
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"type": "image_url",
|
50 |
+
"image_url": {
|
51 |
+
"url": image
|
52 |
+
}
|
53 |
+
}
|
54 |
+
]
|
55 |
+
}
|
56 |
],
|
57 |
+
max_tokens=300
|
58 |
+
)
|
59 |
|
60 |
+
result = response.choices[0].message.content.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# Check if no prescription was detected
|
63 |
+
if "No prescription detected" in result:
|
64 |
+
return "No prescription detected in the image."
|
|
|
|
|
65 |
|
66 |
+
# Clean up the response to just include the medication names
|
67 |
+
# Remove any explanatory text that might appear before or after the list
|
68 |
+
medicines = []
|
69 |
+
for line in result.split('\n'):
|
70 |
+
# Look for numbered lines or lines starting with medication names
|
71 |
+
if re.match(r'^\d+\.', line.strip()):
|
72 |
+
# Extract text after the number and period
|
73 |
+
med_name = re.sub(r'^\d+\.\s*', '', line.strip())
|
74 |
+
medicines.append(med_name)
|
75 |
|
76 |
+
if not medicines:
|
77 |
+
# If numbered list processing didn't work, return the raw output
|
78 |
+
return result
|
|
|
79 |
|
80 |
+
return "\n".join([f"{i+1}. {med}" for i, med in enumerate(medicines)])
|
|
|
81 |
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Create the Gradio interface
|
86 |
+
with gr.Blocks(title="Prescription Medicine Extractor") as app:
|
87 |
+
gr.Markdown("# Prescription Medicine Name Extractor")
|
88 |
+
gr.Markdown("Upload a prescription image to extract medication names.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
api_key = gr.Textbox(
|
91 |
+
label="OpenRouter API Key",
|
92 |
+
placeholder="Enter your OpenRouter API key here",
|
93 |
+
type="password"
|
94 |
+
)
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
with gr.Column():
|
98 |
+
image_input = gr.Image(type="filepath", label="Upload Prescription Image")
|
99 |
+
submit_btn = gr.Button("Extract Medicine Names", variant="primary")
|
100 |
+
|
101 |
+
with gr.Column():
|
102 |
+
output = gr.Textbox(label="Extracted Medicine Names", lines=10)
|
103 |
+
|
104 |
+
submit_btn.click(
|
105 |
+
fn=extract_medicine_names,
|
106 |
+
inputs=[image_input, api_key],
|
107 |
+
outputs=[output]
|
108 |
+
)
|
109 |
+
|
110 |
+
gr.Markdown("""
|
111 |
+
## Usage Instructions
|
112 |
+
1. Enter your OpenRouter API key (get one from https://openrouter.ai)
|
113 |
+
2. Upload a clear image of a medical prescription
|
114 |
+
3. Click the "Extract Medicine Names" button
|
115 |
+
4. The names of medications will be displayed in the output box
|
116 |
+
|
117 |
+
**Note:** For best results, ensure the image is clear and the text is readable.
|
118 |
+
**Privacy Notice:** Your API key and images are processed only during the active session and are not stored.
|
119 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Launch the app
|
122 |
if __name__ == "__main__":
|
123 |
+
print("Starting Prescription Medicine Name Extractor application...")
|
124 |
+
app.launch()
|
|