|
import os
|
|
from glob import glob
|
|
import openai
|
|
from dotenv import load_dotenv
|
|
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.vectorstores import Chroma
|
|
from langchain.document_loaders import PyPDFLoader
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
from langchain.chains import RetrievalQA
|
|
from langchain.memory import ConversationBufferMemory
|
|
|
|
load_dotenv()
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
openai.api_key = api_key
|
|
|
|
|
|
def is_response_complete(response: str) -> bool:
|
|
return response.strip()[-1] in ".!?"
|
|
|
|
|
|
def retry_response(messages):
|
|
response = openai.ChatCompletion.create(
|
|
model="gpt-4o-mini",
|
|
messages=messages
|
|
).choices[0].message['content']
|
|
if not is_response_complete(response):
|
|
response += " This is the end of the response. Please let me know if you need further clarification."
|
|
return response
|
|
|
|
def base_model_chatbot(messages):
|
|
system_message = [
|
|
{"role": "system", "content": "You are a helpful AI chatbot that provides clear, complete, and coherent responses to User's questions. Ensure your answers are in full sentences and complete the thought or idea."}
|
|
]
|
|
messages = system_message + messages
|
|
response = openai.ChatCompletion.create(
|
|
model="gpt-4o-mini",
|
|
messages=messages
|
|
).choices[0].message['content']
|
|
|
|
if not is_response_complete(response):
|
|
response = retry_response(messages)
|
|
return response
|
|
|
|
class VectorDB:
|
|
"""Class to manage document loading and vector database creation."""
|
|
|
|
def __init__(self, docs_directory: str):
|
|
self.docs_directory = docs_directory
|
|
|
|
def create_vector_db(self):
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
|
|
|
files = glob(os.path.join(self.docs_directory, "*.pdf"))
|
|
|
|
loadPDFs = [PyPDFLoader(pdf_file) for pdf_file in files]
|
|
|
|
pdf_docs = list()
|
|
for loader in loadPDFs:
|
|
pdf_docs.extend(loader.load())
|
|
chunks = text_splitter.split_documents(pdf_docs)
|
|
|
|
return Chroma.from_documents(chunks, OpenAIEmbeddings())
|
|
|
|
class ConversationalRetrievalChain:
|
|
"""Class to manage the QA chain setup."""
|
|
|
|
def __init__(self, model_name="gpt-3.5-turbo", temperature=0):
|
|
self.model_name = model_name
|
|
self.temperature = temperature
|
|
|
|
def create_chain(self):
|
|
model = ChatOpenAI(
|
|
model_name=self.model_name,
|
|
temperature=self.temperature,
|
|
system_prompt="You are a knowledgeable AI that answers questions based on provided documents. Always give responses in clear, complete sentences."
|
|
)
|
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
vector_db = VectorDB('docs/')
|
|
retriever = vector_db.create_vector_db().as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
|
return RetrievalQA.from_chain_type(
|
|
llm=model,
|
|
retriever=retriever,
|
|
memory=memory,
|
|
)
|
|
|
|
def with_pdf_chatbot(messages):
|
|
query = messages[-1]['content'].strip()
|
|
qa_chain = ConversationalRetrievalChain().create_chain()
|
|
result = qa_chain({"query": query})
|
|
if not is_response_complete(result['result']):
|
|
result['result'] += " This is the end of the response. Let me know if you need further clarification."
|
|
return result['result'] |