File size: 8,071 Bytes
4ac6a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da9612
 
 
 
 
 
4ac6a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e83c4
4ac6a8a
 
 
 
 
 
 
4da9612
4ac6a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import os
import numpy as np
from PIL import Image
import demoji
from textblob import TextBlob
from faker import Faker
import pandas as pd
from difflib import SequenceMatcher

# Function for Image Mirroring
def mirror_image(input_img):
    if input_img is None:
        return None
    mirrored_img = Image.fromarray(input_img).transpose(Image.FLIP_LEFT_RIGHT)
    return mirrored_img

# Function for Emoji Detection
def detect_emojis(text):
    if not text:
        return "Please enter text containing emojis"
    
    emoji_dict = demoji.findall(text)
    if emoji_dict:
        result = "Emojis found:\n"
        for emoji, desc in emoji_dict.items():
            result += f"{emoji}: {desc}\n"
        return result
    else:
        return "No emojis found in the text"

# Function for Spell Correction
def correct_spelling(text):
    if not text:
        return "Please enter text to correct"
    
    words = text.split()
    corrected_words = []
    
    for word in words:
        corrected_words.append(str(TextBlob(word).correct()))
    
    return f"Original: {text}\nCorrected: {' '.join(corrected_words)}"

# Function to Check for Disarium Number
def check_disarium(number):
    try:
        number = int(number)
        if number <= 0:
            return "Please enter a positive integer"
        
        length = len(str(number))
        temp = number
        sum_val = 0
        
        while temp > 0:
            rem = temp % 10
            sum_val += rem ** length
            temp = temp // 10
            length -= 1
            
        if sum_val == number:
            return f"{number} is a Disarium Number"
        else:
            return f"{number} is NOT a Disarium Number"
    except ValueError:
        return "Please enter a valid integer"

# Function to Generate Fake Data
def generate_fake_data(count=1, include_profile=False):
    try:
        count = int(count)
        if count <= 0:
            return "Please enter a positive number"
    except (ValueError, TypeError):
        return "Please enter a valid number"
    
    fake = Faker()
    
    if include_profile:
        data = [fake.profile() for _ in range(count)]
        df = pd.DataFrame(data)
        return df.to_string()
    else:
        result = ""
        for _ in range(count):
            result += f"Name: {fake.name()}\n"
            result += f"Address: {fake.address()}\n"
            result += f"Text: {fake.text()}\n\n"
        return result

# Function to Compare Text Similarity
def compare_texts(text1, text2):
    if not text1 or not text2:
        return "Please enter both texts to compare"
    
    similarity = SequenceMatcher(None, text1, text2).ratio()
    return f"The texts are {similarity * 100:.2f}% similar"

# Create the Gradio interface with tabs
with gr.Blocks(title="MultiToolBox") as app:
    gr.Markdown("# MultiToolBox")
    gr.Markdown("A versatile utility toolkit with multiple functions")
    
    with gr.Tabs():
        # Image Mirroring Tab
        with gr.Tab("Image Mirror"):
            gr.Markdown("### Mirror an Image Horizontally")
            with gr.Row():
                with gr.Column():
                    img_input = gr.Image(label="Upload Image")
                    mirror_btn = gr.Button("Mirror Image")
                with gr.Column():
                    img_output = gr.Image(label="Mirrored Image")
            
            mirror_btn.click(fn=mirror_image, inputs=img_input, outputs=img_output)
            
            gr.Markdown("""
            **How to use:**
            1. Upload an image using the upload button
            2. Click "Mirror Image" to flip it horizontally
            3. The result will appear in the right panel
            """)
        
        # Emoji Detection Tab
        with gr.Tab("Emoji Detector"):
            gr.Markdown("### Detect Emojis in Text")
            emoji_input = gr.Textbox(label="Enter text with emojis")
            emoji_detect_btn = gr.Button("Detect Emojis")
            emoji_output = gr.Textbox(label="Results")
            
            emoji_detect_btn.click(fn=detect_emojis, inputs=emoji_input, outputs=emoji_output)
            
            gr.Markdown("""
            **How to use:**
            1. Enter text containing emojis
            2. Click "Detect Emojis" to identify and describe them
            
            **Example:** "I love reading books ๐Ÿ“šโค๏ธ๐ŸŒน"
            """)
        
        # Spell Correction Tab
        with gr.Tab("Spell Checker"):
            gr.Markdown("### Correct Spelling Errors")
            spell_input = gr.Textbox(label="Enter text with spelling errors")
            spell_btn = gr.Button("Correct Spelling")
            spell_output = gr.Textbox(label="Corrected Text")
            
            spell_btn.click(fn=correct_spelling, inputs=spell_input, outputs=spell_output)
            
            gr.Markdown("""
            **How to use:**
            1. Enter text with spelling mistakes
            2. Click "Correct Spelling" to fix errors
            
            **Example:** "I havv a problm with speling"
            """)
        
        # Disarium Number Tab
        with gr.Tab("Disarium Checker"):
            gr.Markdown("### Check if a Number is a Disarium Number")
            gr.Markdown("""
            A Disarium number is a number where the sum of its digits raised to their respective positions equals the number itself.
            Example: 135 is a Disarium number because 1^1 + 3^2 + 5^3 = 1 + 9 + 125 = 135
            """)
            
            disarium_input = gr.Textbox(label="Enter a number")
            disarium_btn = gr.Button("Check")
            disarium_output = gr.Textbox(label="Result")
            
            disarium_btn.click(fn=check_disarium, inputs=disarium_input, outputs=disarium_output)
            
            gr.Markdown("""
            **How to use:**
            1. Enter a positive integer
            2. Click "Check" to determine if it's a Disarium number
            
            **Examples:**
            - 135 (Disarium number)
            - 89 (Disarium number: 8^1 + 9^2 = 8 + 81 = 89)
            - 175 (Not a Disarium number)
            """)
        
        # Fake Data Generator Tab
        with gr.Tab("Fake Data Generator"):
            gr.Markdown("### Generate Fake Data")
            
            with gr.Row():
                fake_count = gr.Number(label="Number of entries", value=1)
                fake_profile = gr.Checkbox(label="Generate detailed profiles")
            
            fake_btn = gr.Button("Generate")
            fake_output = gr.Textbox(label="Generated Data", lines=10)
            
            fake_btn.click(fn=generate_fake_data, inputs=[fake_count, fake_profile], outputs=fake_output)
            
            gr.Markdown("""
            **How to use:**
            1. Enter the number of fake data entries to generate
            2. Choose whether to generate detailed profiles
            3. Click "Generate" to create fake data
            
            **Example:** Generate 5 entries with detailed profiles
            """)
        
        # Text Similarity Tab
        with gr.Tab("Text Similarity"):
            gr.Markdown("### Compare Text Similarity")
            
            text1_input = gr.Textbox(label="First Text")
            text2_input = gr.Textbox(label="Second Text")
            compare_btn = gr.Button("Compare")
            similarity_output = gr.Textbox(label="Similarity Result")
            
            compare_btn.click(fn=compare_texts, inputs=[text1_input, text2_input], outputs=similarity_output)
            
            gr.Markdown("""
            **How to use:**
            1. Enter the first text for comparison
            2. Enter the second text for comparison
            3. Click "Compare" to calculate similarity percentage
            
            **Example:**
            - Text 1: "Hello, how are you today?"
            - Text 2: "Hello, how are you doing today?"
            """)

if __name__ == "__main__":
    app.launch()