File size: 8,234 Bytes
38f979d
 
2b5132f
38f979d
f2eec95
8f75d16
f2eec95
72f2a80
e39c5f4
2b5132f
98c04d6
8038dda
c6e0851
 
 
 
 
 
 
e39c5f4
 
 
 
 
c6e0851
e39c5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8038dda
 
2b5132f
 
 
e39c5f4
2b5132f
e39c5f4
2b5132f
 
e39c5f4
2b5132f
 
e39c5f4
2b5132f
 
 
e39c5f4
2b5132f
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
 
2b5132f
e39c5f4
2b5132f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
 
 
 
 
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
 
 
 
f2eec95
e39c5f4
 
 
 
 
 
 
 
 
 
 
 
 
f2eec95
 
e39c5f4
 
 
 
 
5a61687
e39c5f4
 
 
 
5a61687
 
72f2a80
 
57e492d
 
 
 
 
 
e39c5f4
57e492d
 
 
e39c5f4
e95128d
 
57e492d
e39c5f4
 
 
8f75d16
e39c5f4
f2eec95
e39c5f4
5a61687
e39c5f4
72f2a80
 
e39c5f4
 
2b5132f
 
e39c5f4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
import networkx as nx
import matplotlib.pyplot as plt

# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option", 
                                 ["Select an option", "Basic: Properties", 
                                  "Basic: Read and write graphs", "Basic: Simple graph", 
                                  "Basic: Simple graph Directed", "Drawing: Custom Node Position", 
                                  "Drawing: Chess Masters", "Drawing: Cluster Layout"])

# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization", edgewidth=None, nodesize=None):
    if edgewidth is None:
        edgewidth = [1] * len(G.edges())  # Default edge width if not provided

    if nodesize is None:
        nodesize = [300] * len(G.nodes())  # Default node size if not provided

    plt.figure(figsize=(12, 12))
    nx.draw_networkx_edges(G, pos, alpha=0.3, width=edgewidth, edge_color="m")
    nx.draw_networkx_nodes(G, pos, node_size=nodesize, node_color="#210070", alpha=0.9)
    label_options = {"ec": "k", "fc": "white", "alpha": 0.7}
    nx.draw_networkx_labels(G, pos, font_size=14, bbox=label_options)

    # Title/legend
    font = {"fontname": "Helvetica", "color": "k", "fontweight": "bold", "fontsize": 14}
    ax = plt.gca()
    ax.set_title(title, font)
    ax.text(
        0.80,
        0.10,
        "edge width = # games played",
        horizontalalignment="center",
        transform=ax.transAxes,
        fontdict=font,
    )
    ax.text(
        0.80,
        0.06,
        "node size = # games won",
        horizontalalignment="center",
        transform=ax.transAxes,
        fontdict=font,
    )

    # Resize figure for label readability
    ax.margins(0.1, 0.05)
    plt.axis("off")
    st.pyplot(plt)

# Drawing: Cluster Layout
def display_cluster_layout():
    st.title("Drawing: Cluster Layout")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.davis_southern_women_graph()

        # Compute communities using greedy modularity community detection
        communities = nx.community.greedy_modularity_communities(G)

        # Compute positions for the node clusters as if they were themselves nodes in a supergraph
        supergraph = nx.cycle_graph(len(communities))
        superpos = nx.spring_layout(G, scale=50, seed=429)

        # Use the "supernode" positions as the center of each node cluster
        centers = list(superpos.values())
        pos = {}
        for center, comm in zip(centers, communities):
            pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430))

        # Nodes colored by cluster
        for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
            nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
        nx.draw_networkx_edges(G, pos=pos)

        plt.tight_layout()
        st.pyplot(plt)

    elif option == "Create your own":
        uploaded_file = st.file_uploader("Upload your own graph file (in GML format)", type="gml")
        if uploaded_file is not None:
            G_custom = nx.read_gml(uploaded_file)
            # Compute communities using greedy modularity community detection
            communities = nx.community.greedy_modularity_communities(G_custom)

            # Compute positions for the node clusters as if they were themselves nodes in a supergraph
            supergraph = nx.cycle_graph(len(communities))
            superpos = nx.spring_layout(G_custom, scale=50, seed=429)

            # Use the "supernode" positions as the center of each node cluster
            centers = list(superpos.values())
            pos = {}
            for center, comm in zip(centers, communities):
                pos.update(nx.spring_layout(nx.subgraph(G_custom, comm), center=center, seed=1430))

            # Nodes colored by cluster
            for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
                nx.draw_networkx_nodes(G_custom, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
            nx.draw_networkx_edges(G_custom, pos=pos)

            plt.tight_layout()
            st.pyplot(plt)

# Display other sections
def display_basic_properties():
    st.title("Basic: Properties")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    # Default example: 5x5 grid graph
    if option == "Default Example":
        G = nx.lollipop_graph(4, 6)
        display_graph_properties(G)

    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
        num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)

        if st.button("Generate"):
            if num_nodes >= 2 and num_edges >= 1:
                G_custom = nx.lollipop_graph(num_nodes, num_edges)
                display_graph_properties(G_custom)

def display_graph_properties(G):
    pathlengths = []
    st.write("### Source vertex {target:length, }")
    for v in G.nodes():
        spl = dict(nx.single_source_shortest_path_length(G, v))
        st.write(f"Vertex {v}: {spl}")
        for p in spl:
            pathlengths.append(spl[p])

    avg_path_length = sum(pathlengths) / len(pathlengths)
    st.write(f"### Average shortest path length: {avg_path_length}")

    dist = {}
    for p in pathlengths:
        if p in dist:
            dist[p] += 1
        else:
            dist[p] = 1

    st.write("### Length #paths")
    for d in sorted(dist.keys()):
        st.write(f"Length {d}: {dist[d]} paths")

    st.write("### Properties")
    st.write(f"Radius: {nx.radius(G)}")
    st.write(f"Diameter: {nx.diameter(G)}")
    st.write(f"Eccentricity: {nx.eccentricity(G)}")
    st.write(f"Center: {nx.center(G)}")
    st.write(f"Periphery: {nx.periphery(G)}")
    st.write(f"Density: {nx.density(G)}")

    st.write("### Graph Visualization")
    pos = nx.spring_layout(G, seed=3068)
    plt.figure(figsize=(8, 6))
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Display other sections
def display_read_write_graph():
    st.title("Basic: Read and write graphs")
    G = nx.karate_club_graph()

    # Write the graph
    nx.write_gml(G, "karate_club.gml")
    st.write("Graph written to 'karate_club.gml'.")

    # Read the graph back
    G_new = nx.read_gml("karate_club.gml")
    st.write("Graph read back from 'karate_club.gml'.")
    nx.draw(G_new, with_labels=True)
    st.pyplot(plt)

def display_simple_graph():
    st.title("Basic: Simple graph")
    G = nx.complete_graph(5)
    nx.draw(G, with_labels=True)
    st.pyplot(plt)

def display_simple_directed_graph():
    st.title("Basic: Simple graph Directed")
    G = nx.complete_graph(5, nx.DiGraph())
    nx.draw(G, with_labels=True)
    st.pyplot(plt)

def display_custom_node_position():
    st.title("Drawing: Custom Node Position")

    # Create a graph with a few nodes and edges
    G = nx.Graph()
    G.add_edges_from([("A", "B"), ("B", "C"), ("C", "A")])

    # Define custom positions for the nodes
    pos = {"A": (1, 2), "B": (2, 3), "C": (3, 1)}

    # Draw the graph with the custom positions
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)



# Call the appropriate function based on sidebar selection
if sidebar_option == "Basic: Properties":
    display_basic_properties()
elif sidebar_option == "Basic: Read and write graphs":
    display_read_write_graph()
elif sidebar_option == "Basic: Simple graph":
    display_simple_graph()
elif sidebar_option == "Basic: Simple graph Directed":
    display_simple_directed_graph()
elif sidebar_option == "Drawing: Custom Node Position":
    display_custom_node_position()
elif sidebar_option == "Drawing: Chess Masters":
    display_chess_masters_graph()
elif sidebar_option == "Drawing: Cluster Layout":
    display_cluster_layout()
else:
    st.write("Please select a valid option from the sidebar.")