Spaces:
Sleeping
Sleeping
File size: 15,250 Bytes
38f979d 2b5132f 8cbf79a 92a2cc5 38f979d f2eec95 8f75d16 f2eec95 72f2a80 ec08d04 92a2cc5 98c04d6 8038dda 8cbf79a 8038dda 8cbf79a 98c04d6 8cbf79a 98c04d6 8cbf79a 98c04d6 8cbf79a deebd1e 8cbf79a e39c5f4 f2eec95 8cbf79a ec08d04 bfa97dc ec08d04 bfa97dc ec08d04 bfa97dc ec08d04 bfa97dc ec08d04 bfa97dc cf159b9 bfa97dc cf159b9 ec08d04 92a2cc5 8cbf79a 92a2cc5 8cbf79a e39c5f4 8cbf79a e39c5f4 8cbf79a e39c5f4 8cbf79a f2eec95 8cbf79a e39c5f4 8cbf79a 5a61687 8cbf79a e39c5f4 8cbf79a 5a61687 8cbf79a 57e492d 8cbf79a 57e492d 8cbf79a 57e492d 8cbf79a e95128d 8cbf79a e95128d 8cbf79a 57e492d 8cbf79a 72f2a80 deebd1e ec08d04 cf159b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from operator import itemgetter
# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option",
["Select an option", "Basic: Properties",
"Basic: Read and write graphs", "Basic: Simple graph",
"Basic: Simple graph Directed", "Drawing: Custom Node Position",
"Drawing: Cluster Layout", "Drawing: Degree Analysis",
"Drawing: Ego Graph"])
# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization"):
plt.figure(figsize=(8, 6))
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
st.pyplot(plt)
# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
pathlengths = []
st.write("### Source vertex {target:length, }")
for v in G.nodes():
spl = dict(nx.single_source_shortest_path_length(G, v))
st.write(f"Vertex {v}: {spl}")
for p in spl:
pathlengths.append(spl[p])
avg_path_length = sum(pathlengths) / len(pathlengths)
st.write(f"### Average shortest path length: {avg_path_length}")
dist = {}
for p in pathlengths:
dist[p] = dist.get(p, 0) + 1
st.write("### Length #paths")
for d in sorted(dist.keys()):
st.write(f"Length {d}: {dist[d]} paths")
st.write("### Properties")
st.write(f"Radius: {nx.radius(G)}")
st.write(f"Diameter: {nx.diameter(G)}")
st.write(f"Eccentricity: {nx.eccentricity(G)}")
st.write(f"Center: {nx.center(G)}")
st.write(f"Periphery: {nx.periphery(G)}")
st.write(f"Density: {nx.density(G)}")
# Visualize the graph
st.write("### Graph Visualization")
pos = nx.spring_layout(G, seed=3068) # Seed layout for reproducibility
draw_graph(G, pos)
# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
st.write("### Adjacency List:")
for line in nx.generate_adjlist(G):
st.write(line)
# Write the graph's edge list to a file
st.write("### Writing Edge List to 'grid.edgelist' file:")
nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # Save edge list
st.write("Edge list written to 'grid.edgelist'")
# Read the graph from the edge list
st.write("### Reading Edge List from 'grid.edgelist' file:")
H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
st.write("Edge list read into graph H")
# Visualize the graph
st.write("### Graph Visualization:")
pos = nx.spring_layout(H, seed=200) # Seed for reproducibility
draw_graph(H, pos)
# Function to display Simple Graphs for Basic: Simple graph
def display_simple_graph(G, pos=None):
options = {
"font_size": 36,
"node_size": 3000,
"node_color": "white",
"edgecolors": "black",
"linewidths": 5,
"width": 5,
}
# Draw the network
nx.draw_networkx(G, pos, **options)
# Set margins for the axes so that nodes aren't clipped
ax = plt.gca()
ax.margins(0.20)
plt.axis("off")
st.pyplot(plt)
# Function to display Simple Directed Graphs for Basic: Simple graph Directed
def display_simple_directed_graph(G, pos=None):
options = {
"node_size": 500,
"node_color": "lightblue",
"arrowsize": 20,
"width": 2,
"edge_color": "gray",
}
# Draw the directed graph with the given positions and options
nx.draw_networkx(G, pos, **options)
# Set margins for the axes so that nodes aren't clipped
ax = plt.gca()
ax.margins(0.20)
plt.axis("off")
st.pyplot(plt)
# Function to display Custom Node Position Graphs for Drawing: Custom Node Position
def display_custom_node_position():
st.title("Drawing: Custom Node Position")
# Default example graph (path graph with custom node position)
G = nx.path_graph(20)
center_node = 5
edge_nodes = set(G) - {center_node}
# Ensure the nodes around the circle are evenly distributed
pos = nx.circular_layout(G.subgraph(edge_nodes))
pos[center_node] = np.array([0, 0]) # Manually specify node position
# Draw the graph
draw_graph(G, pos)
# Function to display Cluster Layout for Drawing: Cluster Layout
def display_cluster_layout():
st.title("Drawing: Cluster Layout")
G = nx.davis_southern_women_graph() # Example graph
communities = nx.community.greedy_modularity_communities(G)
# Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor
supergraph = nx.cycle_graph(len(communities))
superpos = nx.spring_layout(G, scale=50, seed=429)
# Use the "supernode" positions as the center of each node cluster
centers = list(superpos.values())
pos = {}
for center, comm in zip(centers, communities):
pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430))
# Nodes colored by cluster
for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
nx.draw_networkx_edges(G, pos=pos)
plt.tight_layout()
st.pyplot(plt)
# Function to display Degree Analysis for Drawing: Degree Analysis
def display_degree_analysis():
st.title("Drawing: Degree Analysis")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.gnp_random_graph(100, 0.02, seed=10374196)
degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
dmax = max(degree_sequence)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
# Create a gridspec for adding subplots of different sizes
axgrid = fig.add_gridspec(5, 4)
ax0 = fig.add_subplot(axgrid[0:3, :])
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
pos = nx.spring_layout(Gcc, seed=10396953)
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
ax0.set_title("Connected components of G")
ax0.set_axis_off()
ax1 = fig.add_subplot(axgrid[3:, :2])
ax1.plot(degree_sequence, "b-", marker="o")
ax1.set_title("Degree Rank Plot")
ax1.set_ylabel("Degree")
ax1.set_xlabel("Rank")
ax2 = fig.add_subplot(axgrid[3:, 2:])
ax2.bar(*np.unique(degree_sequence, return_counts=True))
ax2.set_title("Degree histogram")
ax2.set_xlabel("Degree")
ax2.set_ylabel("# of Nodes")
fig.tight_layout()
st.pyplot(fig)
elif option == "Create your own":
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100)
p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02)
if st.button("Generate"):
if n_nodes >= 2:
G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196)
degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True)
dmax = max(degree_sequence)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
# Create a gridspec for adding subplots of different sizes
axgrid = fig.add_gridspec(5, 4)
ax0 = fig.add_subplot(axgrid[0:3, :])
Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0])
pos = nx.spring_layout(Gcc, seed=10396953)
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
ax0.set_title("Connected components of G")
ax0.set_axis_off()
ax1 = fig.add_subplot(axgrid[3:, :2])
ax1.plot(degree_sequence, "b-", marker="o")
ax1.set_title("Degree Rank Plot")
ax1.set_ylabel("Degree")
ax1.set_xlabel("Rank")
ax2 = fig.add_subplot(axgrid[3:, 2:])
ax2.bar(*np.unique(degree_sequence, return_counts=True))
ax2.set_title("Degree histogram")
ax2.set_xlabel("Degree")
ax2.set_ylabel("# of Nodes")
fig.tight_layout()
st.pyplot(fig)
# Function to display Ego Graph for Drawing: Ego Graph
def display_ego_graph():
st.title("Drawing: Ego Graph")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
# Create a BA model graph - use seed for reproducibility
n = 1000
m = 2
seed = 20532
G = nx.barabasi_albert_graph(n, m, seed=seed)
# Find node with largest degree
node_and_degree = G.degree()
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]
# Create ego graph of main hub
hub_ego = nx.ego_graph(G, largest_hub)
# Draw graph
pos = nx.spring_layout(hub_ego, seed=seed) # Seed layout for reproducibility
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)
# Draw ego as large and red
options = {"node_size": 300, "node_color": "r"}
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
plt.tight_layout()
st.pyplot(plt)
elif option == "Create your own":
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2)
if st.button("Generate"):
if n_nodes >= 2:
G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532)
# Find node with largest degree
node_and_degree = G_custom.degree()
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]
# Create ego graph of main hub
hub_ego = nx.ego_graph(G_custom, largest_hub)
# Draw graph
pos = nx.spring_layout(hub_ego, seed=20532) # Seed layout for reproducibility
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)
# Draw ego as large and red
options = {"node_size": 300, "node_color": "r"}
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
plt.tight_layout()
st.pyplot(plt)
# Display Drawing: Ego Graph if selected
if sidebar_option == "Drawing: Ego Graph":
display_ego_graph()
# Display Basic: Properties if selected
elif sidebar_option == "Basic: Properties":
st.title("Basic: Properties")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.lollipop_graph(4, 6)
display_graph_properties(G)
elif option == "Create your own":
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)
if st.button("Generate"):
if num_nodes >= 2 and num_edges >= 1:
G_custom = nx.lollipop_graph(num_nodes, num_edges)
display_graph_properties(G_custom)
# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
st.title("Basic: Read and write graphs")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.grid_2d_graph(5, 5)
display_read_write_graph(G)
elif option == "Create your own":
rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)
if st.button("Generate"):
if rows >= 2 and cols >= 2:
G_custom = nx.grid_2d_graph(rows, cols)
display_read_write_graph(G_custom)
# Display Basic: Simple Graph if selected
elif sidebar_option == "Basic: Simple graph":
st.title("Basic: Simple graph")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.Graph()
G.add_edge(1, 2)
G.add_edge(1, 3)
G.add_edge(1, 5)
G.add_edge(2, 3)
G.add_edge(3, 4)
G.add_edge(4, 5)
pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
display_simple_graph(G, pos)
elif option == "Create your own":
edges = []
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
if edge_input:
edge_list = edge_input.split("\n")
for edge in edge_list:
u, v = map(int, edge.split(","))
edges.append((u, v))
if st.button("Generate"):
G_custom = nx.Graph()
G_custom.add_edges_from(edges)
pos = nx.spring_layout(G_custom, seed=42)
display_simple_graph(G_custom, pos)
# Display Basic: Simple Directed Graph if selected
elif sidebar_option == "Basic: Simple graph Directed":
st.title("Basic: Simple graph Directed")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])
left_nodes = [0, 1, 2]
middle_nodes = [3, 4]
right_nodes = [5, 6]
pos = {n: (0, i) for i, n in enumerate(left_nodes)}
pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})
display_simple_directed_graph(G, pos)
elif option == "Create your own":
edges = []
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
if edge_input:
edge_list = edge_input.split("\n")
for edge in edge_list:
u, v = map(int, edge.split(","))
edges.append((u, v))
if st.button("Generate"):
G_custom = nx.DiGraph()
G_custom.add_edges_from(edges)
pos = nx.spring_layout(G_custom, seed=42)
display_simple_directed_graph(G_custom, pos)
# Display Drawing: Custom Node Position if selected
elif sidebar_option == "Drawing: Custom Node Position":
display_custom_node_position()
# Display Drawing: Cluster Layout if selected
elif sidebar_option == "Drawing: Cluster Layout":
display_cluster_layout()
# Display Drawing: Degree Analysis if selected
elif sidebar_option == "Drawing: Degree Analysis":
display_degree_analysis()
|