Spaces:
Sleeping
Sleeping
File size: 9,602 Bytes
38f979d e39c5f4 38f979d f2eec95 8f75d16 f2eec95 72f2a80 e39c5f4 98c04d6 8038dda c6e0851 e39c5f4 c6e0851 e39c5f4 8038dda e39c5f4 c6e0851 e39c5f4 c6e0851 e39c5f4 98c04d6 e39c5f4 98c04d6 e39c5f4 f2eec95 e39c5f4 f2eec95 e39c5f4 5a61687 e39c5f4 5a61687 72f2a80 e39c5f4 e95128d e39c5f4 8f75d16 e39c5f4 f2eec95 e39c5f4 5a61687 e39c5f4 72f2a80 e39c5f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx
import bz2
# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option",
["Select an option", "Basic: Properties",
"Basic: Read and write graphs", "Basic: Simple graph",
"Basic: Simple graph Directed", "Drawing: Custom Node Position",
"Drawing: Chess Masters"])
# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization", edgewidth=None, nodesize=None):
if edgewidth is None:
edgewidth = [1] * len(G.edges()) # Default edge width if not provided
if nodesize is None:
nodesize = [300] * len(G.nodes()) # Default node size if not provided
plt.figure(figsize=(12, 12))
nx.draw_networkx_edges(G, pos, alpha=0.3, width=edgewidth, edge_color="m")
nx.draw_networkx_nodes(G, pos, node_size=nodesize, node_color="#210070", alpha=0.9)
label_options = {"ec": "k", "fc": "white", "alpha": 0.7}
nx.draw_networkx_labels(G, pos, font_size=14, bbox=label_options)
# Title/legend
font = {"fontname": "Helvetica", "color": "k", "fontweight": "bold", "fontsize": 14}
ax = plt.gca()
ax.set_title(title, font)
ax.text(
0.80,
0.10,
"edge width = # games played",
horizontalalignment="center",
transform=ax.transAxes,
fontdict=font,
)
ax.text(
0.80,
0.06,
"node size = # games won",
horizontalalignment="center",
transform=ax.transAxes,
fontdict=font,
)
# Resize figure for label readability
ax.margins(0.1, 0.05)
plt.axis("off")
st.pyplot(plt)
def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"):
"""Read chess games in pgn format in pgn_file.
Filenames ending in .bz2 will be uncompressed.
Return the MultiDiGraph of players connected by a chess game.
Edges contain game data in a dict.
"""
G = nx.MultiDiGraph()
game = {}
with bz2.BZ2File(pgn_file) as datafile:
lines = [line.decode().rstrip("\r\n") for line in datafile]
for line in lines:
if line.startswith("["):
tag, value = line[1:-1].split(" ", 1)
game[str(tag)] = value.strip('"')
else:
if game:
white = game.pop("White")
black = game.pop("Black")
G.add_edge(white, black, **game)
game = {}
return G
# Draw Chess Masters Graph (the main section)
def display_chess_masters_graph():
st.title("Drawing: Chess Masters")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
if option == "Default Example":
G = chess_pgn_graph("chess_masters_WCC.pgn.bz2")
# identify connected components of the undirected version
H = G.to_undirected()
Gcc = [H.subgraph(c) for c in nx.connected_components(H)]
if len(Gcc) > 1:
st.write(f"Note the disconnected component consisting of:\n{Gcc[1].nodes()}")
# find all games with B97 opening (as described in ECO)
openings = {game_info["ECO"] for (white, black, game_info) in G.edges(data=True)}
st.write(f"\nFrom a total of {len(openings)} different openings,")
st.write("the following games used the Sicilian opening")
st.write('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n')
for white, black, game_info in G.edges(data=True):
if game_info["ECO"] == "B97":
summary = f"{white} vs {black}\n"
for k, v in game_info.items():
summary += f" {k}: {v}\n"
summary += "\n"
st.write(summary)
# Create undirected graph H without multi-edges
H = nx.Graph(G)
# Edge width is proportional to number of games played
edgewidth = [len(G.get_edge_data(u, v)) for u, v in H.edges()]
# Node size is proportional to number of games won
wins = dict.fromkeys(G.nodes(), 0.0)
for u, v, d in G.edges(data=True):
r = d["Result"].split("-")
if r[0] == "1":
wins[u] += 1.0
elif r[0] == "1/2":
wins[u] += 0.5
wins[v] += 0.5
else:
wins[v] += 1.0
nodesize = [wins[v] * 50 for v in H]
# Generate layout for visualization
pos = nx.kamada_kawai_layout(H)
# Manually tweak some positions to avoid label overlap
pos["Reshevsky, Samuel H"] += (0.05, -0.10)
pos["Botvinnik, Mikhail M"] += (0.03, -0.06)
pos["Smyslov, Vassily V"] += (0.05, -0.03)
# Draw the graph
draw_graph(H, pos, title="World Chess Championship Games: 1886 - 1985", edgewidth=edgewidth, nodesize=nodesize)
elif option == "Create your own":
uploaded_file = st.file_uploader("Upload your own PGN file", type="pgn")
if uploaded_file is not None:
G_custom = chess_pgn_graph(uploaded_file)
# Identify connected components and draw the graph for the uploaded data
H_custom = G_custom.to_undirected()
edgewidth = [len(G_custom.get_edge_data(u, v)) for u, v in H_custom.edges()]
wins = dict.fromkeys(G_custom.nodes(), 0.0)
for u, v, d in G_custom.edges(data=True):
r = d["Result"].split("-")
if r[0] == "1":
wins[u] += 1.0
elif r[0] == "1/2":
wins[u] += 0.5
wins[v] += 0.5
else:
wins[v] += 1.0
nodesize = [wins[v] * 50 for v in H_custom]
pos_custom = nx.kamada_kawai_layout(H_custom)
draw_graph(H_custom, pos_custom, title="Custom Chess Game Graph", edgewidth=edgewidth, nodesize=nodesize)
# Display other sections
def display_basic_properties():
st.title("Basic: Properties")
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
# Default example: 5x5 grid graph
if option == "Default Example":
G = nx.lollipop_graph(4, 6)
display_graph_properties(G)
elif option == "Create your own":
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)
if st.button("Generate"):
if num_nodes >= 2 and num_edges >= 1:
G_custom = nx.lollipop_graph(num_nodes, num_edges)
display_graph_properties(G_custom)
def display_graph_properties(G):
pathlengths = []
st.write("### Source vertex {target:length, }")
for v in G.nodes():
spl = dict(nx.single_source_shortest_path_length(G, v))
st.write(f"Vertex {v}: {spl}")
for p in spl:
pathlengths.append(spl[p])
avg_path_length = sum(pathlengths) / len(pathlengths)
st.write(f"### Average shortest path length: {avg_path_length}")
dist = {}
for p in pathlengths:
if p in dist:
dist[p] += 1
else:
dist[p] = 1
st.write("### Length #paths")
for d in sorted(dist.keys()):
st.write(f"Length {d}: {dist[d]} paths")
st.write("### Properties")
st.write(f"Radius: {nx.radius(G)}")
st.write(f"Diameter: {nx.diameter(G)}")
st.write(f"Eccentricity: {nx.eccentricity(G)}")
st.write(f"Center: {nx.center(G)}")
st.write(f"Periphery: {nx.periphery(G)}")
st.write(f"Density: {nx.density(G)}")
st.write("### Graph Visualization")
pos = nx.spring_layout(G, seed=3068)
plt.figure(figsize=(8, 6))
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
st.pyplot(plt)
# Display other sections
def display_read_write_graph():
st.title("Basic: Read and write graphs")
G = nx.karate_club_graph()
# Write the graph
nx.write_gml(G, "karate_club.gml")
st.write("Graph written to 'karate_club.gml'.")
# Read the graph back
G_new = nx.read_gml("karate_club.gml")
st.write("Graph read back from 'karate_club.gml'.")
nx.draw(G_new, with_labels=True)
st.pyplot(plt)
def display_simple_graph():
st.title("Basic: Simple graph")
G = nx.complete_graph(5)
nx.draw(G, with_labels=True)
st.pyplot(plt)
def display_simple_directed_graph():
st.title("Basic: Simple graph Directed")
G = nx.complete_graph(5, nx.DiGraph())
nx.draw(G, with_labels=True)
st.pyplot(plt)
def display_custom_node_position():
st.title("Drawing: Custom Node Position")
pos = {"A": (1, 2), "B": (2, 3), "C": (3, 1)}
G = nx.Graph(pos)
nx.draw(G, pos=pos, with_labels=True)
st.pyplot(plt)
# Call the appropriate function based on sidebar selection
if sidebar_option == "Basic: Properties":
display_basic_properties()
elif sidebar_option == "Basic: Read and write graphs":
display_read_write_graph()
elif sidebar_option == "Basic: Simple graph":
display_simple_graph()
elif sidebar_option == "Basic: Simple graph Directed":
display_simple_directed_graph()
elif sidebar_option == "Drawing: Custom Node Position":
display_custom_node_position()
elif sidebar_option == "Drawing: Chess Masters":
display_chess_masters_graph()
else:
st.write("Please select a valid option from the sidebar.")
|