File size: 4,591 Bytes
38f979d
 
 
 
e95128d
8f75d16
 
98c04d6
8f75d16
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f75d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e95128d
67e7fee
e95128d
98c04d6
8f75d16
e95128d
 
98c04d6
e95128d
 
 
 
 
 
c8786b4
 
 
 
 
8f75d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8786b4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx

# Add a sidebar with options
sidebar_option = st.sidebar.radio("Select an option", 
                                 ["Select an option", "Basic: Properties", "Basic: Read and write graphs"])

# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
    # Initialize a list for path lengths
    pathlengths = []

    # Display the source-target shortest path lengths
    st.write("### Source vertex {target:length, }")
    for v in G.nodes():
        spl = dict(nx.single_source_shortest_path_length(G, v))
        st.write(f"Vertex {v}: {spl}")
        for p in spl:
            pathlengths.append(spl[p])

    # Calculate and display the average shortest path length
    avg_path_length = sum(pathlengths) / len(pathlengths)
    st.write(f"### Average shortest path length: {avg_path_length}")

    # Calculate and display the distribution of path lengths
    dist = {}
    for p in pathlengths:
        if p in dist:
            dist[p] += 1
        else:
            dist[p] = 1

    st.write("### Length #paths")
    for d in sorted(dist.keys()):
        st.write(f"Length {d}: {dist[d]} paths")

    # Display the graph metrics with a "Properties" heading
    st.write("### Properties")
    st.write(f"Radius: {nx.radius(G)}")
    st.write(f"Diameter: {nx.diameter(G)}")
    st.write(f"Eccentricity: {nx.eccentricity(G)}")
    st.write(f"Center: {nx.center(G)}")
    st.write(f"Periphery: {nx.periphery(G)}")
    st.write(f"Density: {nx.density(G)}")

    # Visualize the graph
    st.write("### Graph Visualization")
    pos = nx.spring_layout(G, seed=3068)  # Seed layout for reproducibility
    plt.figure(figsize=(8, 6))
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
    # Print the adjacency list of the graph
    st.write("### Adjacency List:")
    for line in nx.generate_adjlist(G):
        st.write(line)
    
    # Write the graph's edge list to a file
    st.write("### Writing Edge List to 'grid.edgelist' file:")
    nx.write_edgelist(G, path="grid.edgelist", delimiter=":")
    st.write("Edge list written to 'grid.edgelist'")

    # Read the graph from the edge list
    st.write("### Reading Edge List from 'grid.edgelist' file:")
    H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
    st.write("Edge list read into graph H")

    # Visualize the graph
    st.write("### Graph Visualization:")
    pos = nx.spring_layout(H, seed=200)  # Seed for reproducibility
    plt.figure(figsize=(8, 6))
    nx.draw(H, pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Display Basic: Properties if selected
if sidebar_option == "Basic: Properties":
    st.title("Basic: Properties")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    # Default example: 5x5 grid graph
    if option == "Default Example":
        G = nx.lollipop_graph(4, 6)
        display_graph_properties(G)

    # Create your own graph
    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
        num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)

        # Button to generate the graph
        if st.button("Generate"):
            if num_nodes >= 2 and num_edges >= 1:
                G_custom = nx.lollipop_graph(num_nodes, num_edges)
                display_graph_properties(G_custom)

# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
    st.title("Basic: Read and write graphs")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    # Default example: 5x5 grid graph
    if option == "Default Example":
        G = nx.grid_2d_graph(5, 5)  # 5x5 grid
        display_read_write_graph(G)

    # Create your own graph
    elif option == "Create your own":
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)

        # Button to generate the graph
        if st.button("Generate"):
            if rows >= 2 and cols >= 2:
                G_custom = nx.grid_2d_graph(rows, cols)
                display_read_write_graph(G_custom)