File size: 12,845 Bytes
38f979d
2b5132f
8cbf79a
 
38f979d
f2eec95
8f75d16
f2eec95
72f2a80
ec08d04
cf159b9
98c04d6
8038dda
8cbf79a
 
 
8038dda
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
 
 
 
 
 
 
 
 
 
 
 
8cbf79a
98c04d6
8cbf79a
 
 
 
 
 
 
 
 
 
 
deebd1e
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
f2eec95
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
 
 
 
bfa97dc
 
ec08d04
bfa97dc
 
 
ec08d04
bfa97dc
 
 
 
 
ec08d04
 
bfa97dc
 
 
ec08d04
bfa97dc
 
cf159b9
 
 
 
 
 
 
 
 
bfa97dc
cf159b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec08d04
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39c5f4
8cbf79a
e39c5f4
8cbf79a
 
 
e39c5f4
8cbf79a
 
 
f2eec95
8cbf79a
 
 
 
 
 
 
e39c5f4
8cbf79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a61687
8cbf79a
 
e39c5f4
8cbf79a
5a61687
8cbf79a
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
 
 
57e492d
8cbf79a
e95128d
8cbf79a
 
 
 
 
 
 
 
e95128d
8cbf79a
 
 
 
 
57e492d
8cbf79a
72f2a80
deebd1e
ec08d04
 
 
 
cf159b9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option", 
                                 ["Select an option", "Basic: Properties", 
                                  "Basic: Read and write graphs", "Basic: Simple graph", 
                                  "Basic: Simple graph Directed", "Drawing: Custom Node Position",
                                  "Drawing: Cluster Layout", "Drawing: Degree Analysis"])

# Helper function to draw and display graph
def draw_graph(G, pos=None, title="Graph Visualization"):
    plt.figure(figsize=(8, 6))
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
    pathlengths = []
    st.write("### Source vertex {target:length, }")
    for v in G.nodes():
        spl = dict(nx.single_source_shortest_path_length(G, v))
        st.write(f"Vertex {v}: {spl}")
        for p in spl:
            pathlengths.append(spl[p])

    avg_path_length = sum(pathlengths) / len(pathlengths)
    st.write(f"### Average shortest path length: {avg_path_length}")

    dist = {}
    for p in pathlengths:
        dist[p] = dist.get(p, 0) + 1
    st.write("### Length #paths")
    for d in sorted(dist.keys()):
        st.write(f"Length {d}: {dist[d]} paths")

    st.write("### Properties")
    st.write(f"Radius: {nx.radius(G)}")
    st.write(f"Diameter: {nx.diameter(G)}")
    st.write(f"Eccentricity: {nx.eccentricity(G)}")
    st.write(f"Center: {nx.center(G)}")
    st.write(f"Periphery: {nx.periphery(G)}")
    st.write(f"Density: {nx.density(G)}")

    # Visualize the graph
    st.write("### Graph Visualization")
    pos = nx.spring_layout(G, seed=3068)  # Seed layout for reproducibility
    draw_graph(G, pos)

# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
    st.write("### Adjacency List:")
    for line in nx.generate_adjlist(G):
        st.write(line)
    
    # Write the graph's edge list to a file
    st.write("### Writing Edge List to 'grid.edgelist' file:")
    nx.write_edgelist(G, path="grid.edgelist", delimiter=":")  # Save edge list
    st.write("Edge list written to 'grid.edgelist'")

    # Read the graph from the edge list
    st.write("### Reading Edge List from 'grid.edgelist' file:")
    H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
    st.write("Edge list read into graph H")

    # Visualize the graph
    st.write("### Graph Visualization:")
    pos = nx.spring_layout(H, seed=200)  # Seed for reproducibility
    draw_graph(H, pos)

# Function to display Simple Graphs for Basic: Simple graph
def display_simple_graph(G, pos=None):
    options = {
        "font_size": 36,
        "node_size": 3000,
        "node_color": "white",
        "edgecolors": "black",
        "linewidths": 5,
        "width": 5,
    }
    
    # Draw the network
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Simple Directed Graphs for Basic: Simple graph Directed
def display_simple_directed_graph(G, pos=None):
    options = {
        "node_size": 500,
        "node_color": "lightblue",
        "arrowsize": 20,
        "width": 2,
        "edge_color": "gray",
    }
    
    # Draw the directed graph with the given positions and options
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Function to display Custom Node Position Graphs for Drawing: Custom Node Position
def display_custom_node_position():
    st.title("Drawing: Custom Node Position")
    
    # Default example graph (path graph with custom node position)
    G = nx.path_graph(20)
    center_node = 5
    edge_nodes = set(G) - {center_node}
    
    # Ensure the nodes around the circle are evenly distributed
    pos = nx.circular_layout(G.subgraph(edge_nodes))
    pos[center_node] = np.array([0, 0])  # Manually specify node position
    
    # Draw the graph
    draw_graph(G, pos)

# Function to display Cluster Layout for Drawing: Cluster Layout
def display_cluster_layout():
    st.title("Drawing: Cluster Layout")

    G = nx.davis_southern_women_graph()  # Example graph
    communities = nx.community.greedy_modularity_communities(G)

    # Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor
    supergraph = nx.cycle_graph(len(communities))
    superpos = nx.spring_layout(G, scale=50, seed=429)

    # Use the "supernode" positions as the center of each node cluster
    centers = list(superpos.values())
    pos = {}
    for center, comm in zip(centers, communities):
        pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430))

        # Nodes colored by cluster
    for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")):
        nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100)
    nx.draw_networkx_edges(G, pos=pos)

    plt.tight_layout()
    st.pyplot(plt)

# Function to display Degree Analysis for Drawing: Degree Analysis
def display_degree_analysis():
    st.title("Drawing: Degree Analysis")

    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.gnp_random_graph(100, 0.02, seed=10374196)
        
        degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
        dmax = max(degree_sequence)

        fig = plt.figure("Degree of a random graph", figsize=(8, 8))
        # Create a gridspec for adding subplots of different sizes
        axgrid = fig.add_gridspec(5, 4)

        ax0 = fig.add_subplot(axgrid[0:3, :])
        Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
        pos = nx.spring_layout(Gcc, seed=10396953)
        nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
        nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
        ax0.set_title("Connected components of G")
        ax0.set_axis_off()

        ax1 = fig.add_subplot(axgrid[3:, :2])
        ax1.plot(degree_sequence, "b-", marker="o")
        ax1.set_title("Degree Rank Plot")
        ax1.set_ylabel("Degree")
        ax1.set_xlabel("Rank")

        ax2 = fig.add_subplot(axgrid[3:, 2:])
        ax2.bar(*np.unique(degree_sequence, return_counts=True))
        ax2.set_title("Degree histogram")
        ax2.set_xlabel("Degree")
        ax2.set_ylabel("# of Nodes")

        fig.tight_layout()
        st.pyplot(fig)

    elif option == "Create your own":
        n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100)
        p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02)
        
        if st.button("Generate"):
            if n_nodes >= 2:
                G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196)
                degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True)
                dmax = max(degree_sequence)

                fig = plt.figure("Degree of a random graph", figsize=(8, 8))
                # Create a gridspec for adding subplots of different sizes
                axgrid = fig.add_gridspec(5, 4)

                ax0 = fig.add_subplot(axgrid[0:3, :])
                Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0])
                pos = nx.spring_layout(Gcc, seed=10396953)
                nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
                nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
                ax0.set_title("Connected components of G")
                ax0.set_axis_off()

                ax1 = fig.add_subplot(axgrid[3:, :2])
                ax1.plot(degree_sequence, "b-", marker="o")
                ax1.set_title("Degree Rank Plot")
                ax1.set_ylabel("Degree")
                ax1.set_xlabel("Rank")

                ax2 = fig.add_subplot(axgrid[3:, 2:])
                ax2.bar(*np.unique(degree_sequence, return_counts=True))
                ax2.set_title("Degree histogram")
                ax2.set_xlabel("Degree")
                ax2.set_ylabel("# of Nodes")

                fig.tight_layout()
                st.pyplot(fig)

# Display Basic: Properties if selected
if sidebar_option == "Basic: Properties":
    st.title("Basic: Properties")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.lollipop_graph(4, 6)
        display_graph_properties(G)

    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
        num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)

        if st.button("Generate"):
            if num_nodes >= 2 and num_edges >= 1:
                G_custom = nx.lollipop_graph(num_nodes, num_edges)
                display_graph_properties(G_custom)

# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
    st.title("Basic: Read and write graphs")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.grid_2d_graph(5, 5)
        display_read_write_graph(G)

    elif option == "Create your own":
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)

        if st.button("Generate"):
            if rows >= 2 and cols >= 2:
                G_custom = nx.grid_2d_graph(rows, cols)
                display_read_write_graph(G_custom)

# Display Basic: Simple Graph if selected
elif sidebar_option == "Basic: Simple graph":
    st.title("Basic: Simple graph")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.Graph()
        G.add_edge(1, 2)
        G.add_edge(1, 3)
        G.add_edge(1, 5)
        G.add_edge(2, 3)
        G.add_edge(3, 4)
        G.add_edge(4, 5)

        pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
        display_simple_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.Graph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_graph(G_custom, pos)

# Display Basic: Simple Directed Graph if selected
elif sidebar_option == "Basic: Simple graph Directed":
    st.title("Basic: Simple graph Directed")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    if option == "Default Example":
        G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])

        left_nodes = [0, 1, 2]
        middle_nodes = [3, 4]
        right_nodes = [5, 6]

        pos = {n: (0, i) for i, n in enumerate(left_nodes)}
        pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
        pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})

        display_simple_directed_graph(G, pos)

    elif option == "Create your own":
        edges = []
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        if st.button("Generate"):
            G_custom = nx.DiGraph()
            G_custom.add_edges_from(edges)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_directed_graph(G_custom, pos)

# Display Drawing: Custom Node Position if selected
elif sidebar_option == "Drawing: Custom Node Position":
    display_custom_node_position()

# Display Drawing: Cluster Layout if selected
elif sidebar_option == "Drawing: Cluster Layout":
    display_cluster_layout()

# Display Drawing: Degree Analysis if selected
elif sidebar_option == "Drawing: Degree Analysis":
    display_degree_analysis()