File size: 6,729 Bytes
38f979d
 
 
 
f2eec95
8f75d16
f2eec95
 
98c04d6
8f75d16
98c04d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f75d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2eec95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f75d16
e95128d
67e7fee
e95128d
98c04d6
8f75d16
e95128d
 
98c04d6
e95128d
 
 
 
 
 
c8786b4
 
 
 
 
8f75d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8786b4
 
 
 
 
f2eec95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx

# Sidebar for selecting an option
sidebar_option = st.sidebar.radio("Select an option", 
                                 ["Select an option", "Basic: Properties", 
                                  "Basic: Read and write graphs", "Basic: Simple graph"])

# Function to display properties and graph for Basic: Properties
def display_graph_properties(G):
    # Initialize a list for path lengths
    pathlengths = []

    # Display the source-target shortest path lengths
    st.write("### Source vertex {target:length, }")
    for v in G.nodes():
        spl = dict(nx.single_source_shortest_path_length(G, v))
        st.write(f"Vertex {v}: {spl}")
        for p in spl:
            pathlengths.append(spl[p])

    # Calculate and display the average shortest path length
    avg_path_length = sum(pathlengths) / len(pathlengths)
    st.write(f"### Average shortest path length: {avg_path_length}")

    # Calculate and display the distribution of path lengths
    dist = {}
    for p in pathlengths:
        if p in dist:
            dist[p] += 1
        else:
            dist[p] = 1

    st.write("### Length #paths")
    for d in sorted(dist.keys()):
        st.write(f"Length {d}: {dist[d]} paths")

    # Display the graph metrics with a "Properties" heading
    st.write("### Properties")
    st.write(f"Radius: {nx.radius(G)}")
    st.write(f"Diameter: {nx.diameter(G)}")
    st.write(f"Eccentricity: {nx.eccentricity(G)}")
    st.write(f"Center: {nx.center(G)}")
    st.write(f"Periphery: {nx.periphery(G)}")
    st.write(f"Density: {nx.density(G)}")

    # Visualize the graph
    st.write("### Graph Visualization")
    pos = nx.spring_layout(G, seed=3068)  # Seed layout for reproducibility
    plt.figure(figsize=(8, 6))
    nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Function to display graph for Basic: Read and write graphs
def display_read_write_graph(G):
    # Print the adjacency list of the graph
    st.write("### Adjacency List:")
    for line in nx.generate_adjlist(G):
        st.write(line)
    
    # Write the graph's edge list to a file
    st.write("### Writing Edge List to 'grid.edgelist' file:")
    nx.write_edgelist(G, path="grid.edgelist", delimiter=":")
    st.write("Edge list written to 'grid.edgelist'")

    # Read the graph from the edge list
    st.write("### Reading Edge List from 'grid.edgelist' file:")
    H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
    st.write("Edge list read into graph H")

    # Visualize the graph
    st.write("### Graph Visualization:")
    pos = nx.spring_layout(H, seed=200)  # Seed for reproducibility
    plt.figure(figsize=(8, 6))
    nx.draw(H, pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
    st.pyplot(plt)

# Function to display Simple Graphs for Basic: Simple graph
def display_simple_graph(G, pos=None):
    options = {
        "font_size": 36,
        "node_size": 3000,
        "node_color": "white",
        "edgecolors": "black",
        "linewidths": 5,
        "width": 5,
    }
    
    # Draw the network
    nx.draw_networkx(G, pos, **options)

    # Set margins for the axes so that nodes aren't clipped
    ax = plt.gca()
    ax.margins(0.20)
    plt.axis("off")
    st.pyplot(plt)

# Display Basic: Properties if selected
if sidebar_option == "Basic: Properties":
    st.title("Basic: Properties")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    # Default example: 5x5 grid graph
    if option == "Default Example":
        G = nx.lollipop_graph(4, 6)
        display_graph_properties(G)

    # Create your own graph
    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5)
        num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3)

        # Button to generate the graph
        if st.button("Generate"):
            if num_nodes >= 2 and num_edges >= 1:
                G_custom = nx.lollipop_graph(num_nodes, num_edges)
                display_graph_properties(G_custom)

# Display Basic: Read and write graphs if selected
elif sidebar_option == "Basic: Read and write graphs":
    st.title("Basic: Read and write graphs")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    # Default example: 5x5 grid graph
    if option == "Default Example":
        G = nx.grid_2d_graph(5, 5)  # 5x5 grid
        display_read_write_graph(G)

    # Create your own graph
    elif option == "Create your own":
        rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5)
        cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5)

        # Button to generate the graph
        if st.button("Generate"):
            if rows >= 2 and cols >= 2:
                G_custom = nx.grid_2d_graph(rows, cols)
                display_read_write_graph(G_custom)

# Display Basic: Simple Graph if selected
elif sidebar_option == "Basic: Simple graph":
    st.title("Basic: Simple graph")
    option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))

    # Default example: simple undirected graph
    if option == "Default Example":
        G = nx.Graph()
        G.add_edge(1, 2)
        G.add_edge(1, 3)
        G.add_edge(1, 5)
        G.add_edge(2, 3)
        G.add_edge(3, 4)
        G.add_edge(4, 5)

        # explicitly set positions for visualization
        pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
        display_simple_graph(G, pos)

    # Create your own graph
    elif option == "Create your own":
        num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=20, value=5)
        edges = []
        
        # Let the user define edges
        st.write("Enter the edges (as pairs of nodes) separated by commas. For example, 1,2 or 3,4.")
        edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3")
        
        # Parse the edges
        if edge_input:
            edge_list = edge_input.split("\n")
            for edge in edge_list:
                u, v = map(int, edge.split(","))
                edges.append((u, v))

        # Button to generate the graph
        if st.button("Generate"):
            G_custom = nx.Graph()
            G_custom.add_edges_from(edges)
            
            # Set a basic layout (spring layout as default)
            pos = nx.spring_layout(G_custom, seed=42)
            display_simple_graph(G_custom, pos)